鉴别器
计算机科学
面子(社会学概念)
发电机(电路理论)
特征(语言学)
人工智能
模式识别(心理学)
面部识别系统
特征提取
身份(音乐)
光学(聚焦)
翻译(生物学)
编码(内存)
功率(物理)
探测器
电信
声学
社会科学
语言学
化学
生物化学
量子力学
社会学
哲学
物理
光学
信使核糖核酸
基因
作者
Wenshuang Liu,Wenting Chen,Yuanlue Zhu,Linlin Shen
标识
DOI:10.1109/icpr48806.2021.9412084
摘要
In this paper, we propose a Stable Age Translation GAN (SATGAN) to generate fake face images at different ages to augment age biased face datasets for Cross-Age Face Recognition (CAFR). The proposed SATGAN consists of both generator and discriminator. As a part of the generator, a novel Mask Attention Module (MAM) is introduced to make the generator focus on the face area. In addition, the generator employs a Uniform Distribution Discriminator (UDD) to supervise the learning of latent feature map and enforce the uniform distribution. Besides, the discriminator employs a Feature Separation Module (FSM) to disentangle identity information from the age information. The quantitative and qualitative evaluations on Morph dataset prove that SATGAN achieves much better performance than existing methods. The face recognition model trained using dataset (VGGFace2 and MS-Celeb-lM) augmented using our SATGAN achieves better accuracy on cross age dataset like Cross-Age LFW and AgeDB-30.
科研通智能强力驱动
Strongly Powered by AbleSci AI