材料科学
复合数
弹性体
硅酮
自愈水凝胶
复合材料
微粒
聚合物
纳米技术
化学工程
高分子化学
工程类
作者
Zichao Wang,Xuan Zhang,Tao Cao,Tong Wang,Linxiao Sun,Keyao Wang,Xiaodong Fan
标识
DOI:10.1021/acsami.1c15052
摘要
Conductive hydrogels are promising multifunctional materials for wearable sensors, but their practical applications require combined properties that are difficult to achieve. Herein, we developed a flexible wearable sensor with double-layer structure based on conductive composite hydrogel, which included the outer layer of silicone elastomer (Ecoflex)/silica microparticle composite film and the inner layer of P(AAm-co-HEMA)-MXene-AgNPs hydrogel. Through covalently cross-linking silicone elastomer on the surface of the hydrogel polymer, we bonded a thin Ecoflex film (100 μm) on the P(AAm-co-HEMA)-MXene-AgNPs hydrogel with robust interface, which can easily adhere to the Ecoflex/SiO2 microparticle composite film by silicone glue. The Ecoflex/SiO2 microparticle composite film endows the strain wearable sensor with superhydrophobic function that could maintain the stability under stretching or bending. Moreover, it can effectively resist the interference of water droplets and water flow. The P(AAm-co-HEMA)-MXene-AgNPs hydrogel exhibits outstanding antibacterial activity to inhibit Staphylococcus aureus, Escherichia coli, and even drug-resistant Escherichia coli. In addition, the flexible wearable sensor exhibited good self-adhesive performance by changing the reaction temperature of hydrogel and can adhere strongly onto various materials. The conductive composite hydrogel reported in this work contributes an innovative strategy for the preparation of multifunctional flexible wearable sensor.
科研通智能强力驱动
Strongly Powered by AbleSci AI