Closed loop predictive control of adaptive optics systems with convolutional neural networks

斯太尔率 自适应光学 计算机科学 波前 滞后 人工神经网络 模型预测控制 控制理论(社会学) 望远镜 变形镜 控制器(灌溉) 伺服 人工智能 物理 控制(管理) 光学 计算机网络 农学 生物
作者
Robin Swanson,Masen Lamb,Carlos Correia,Suresh Sivanandam,Kiriakos N. Kutulakos
出处
期刊:Monthly Notices of the Royal Astronomical Society [Oxford University Press]
卷期号:503 (2): 2944-2954 被引量:31
标识
DOI:10.1093/mnras/stab632
摘要

Predictive wavefront control is an important and rapidly developing field of adaptive optics (AO). Through the prediction of future wavefront effects, the inherent AO system servo-lag caused by the measurement, computation, and application of the wavefront correction can be significantly mitigated. This lag can impact the final delivered science image, including reduced strehl and contrast, and inhibits our ability to reliably use faint guidestars. We summarize here a novel method for training deep neural networks for predictive control based on an adversarial prior. Unlike previous methods in the literature, which have shown results based on previously generated data or for open-loop systems, we demonstrate our network's performance simulated in closed loop. Our models are able to both reduce effects induced by servo-lag and push the faint end of reliable control with natural guidestars, improving K-band Strehl performance compared to classical methods by over 55% for 16th magnitude guide stars on an 8-meter telescope. We further show that LSTM based approaches may be better suited in high-contrast scenarios where servo-lag error is most pronounced, while traditional feed forward models are better suited for high noise scenarios. Finally, we discuss future strategies for implementing our system in real-time and on astronomical telescope systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
盼不热夏完成签到,获得积分10
1秒前
yue发布了新的文献求助10
1秒前
vivee完成签到 ,获得积分10
1秒前
领导范儿应助科研通管家采纳,获得10
3秒前
lxy应助科研通管家采纳,获得10
3秒前
lxy应助科研通管家采纳,获得10
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
香蕉觅云应助失眠的血茗采纳,获得10
4秒前
tcf发布了新的文献求助10
4秒前
灵巧的仙人掌完成签到,获得积分20
4秒前
4秒前
略略略完成签到,获得积分10
4秒前
5秒前
5秒前
张一发布了新的文献求助10
7秒前
sandra完成签到 ,获得积分10
7秒前
jiexika完成签到,获得积分10
7秒前
shuy关注了科研通微信公众号
8秒前
FashionBoy应助飞云采纳,获得10
8秒前
8秒前
高贵熊猫完成签到,获得积分10
9秒前
你好灰太狼完成签到,获得积分10
10秒前
mag发布了新的文献求助10
10秒前
kk发布了新的文献求助10
10秒前
堇笙vv完成签到,获得积分10
11秒前
顺利的夜梦完成签到,获得积分10
12秒前
搜集达人应助小洪俊熙采纳,获得10
12秒前
12秒前
sss1222完成签到,获得积分10
12秒前
英俊的铭应助xiaomu采纳,获得10
13秒前
14秒前
15秒前
16秒前
kk完成签到,获得积分10
16秒前
自觉的曼彤完成签到,获得积分10
17秒前
17秒前
大气早晨发布了新的文献求助10
17秒前
vivee关注了科研通微信公众号
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097250
求助须知:如何正确求助?哪些是违规求助? 3634879
关于积分的说明 11521967
捐赠科研通 3345316
什么是DOI,文献DOI怎么找? 1838543
邀请新用户注册赠送积分活动 906134
科研通“疑难数据库(出版商)”最低求助积分说明 823476