Application of Deep Learning on Millimeter-Wave Radar Signals: A Review.

极高频率 雷达成像 遥感 卷积神经网络 连续波雷达 雷达工程细节
作者
Fahad Jibrin Abdu,Yixiong Zhang,Maozhong Fu,Yuhan Li,Zhenmiao Deng
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:21 (6): 1951- 被引量:1
标识
DOI:10.3390/s21061951
摘要

The progress brought by the deep learning technology over the last decade has inspired many research domains, such as radar signal processing, speech and audio recognition, etc., to apply it to their respective problems. Most of the prominent deep learning models exploit data representations acquired with either Lidar or camera sensors, leaving automotive radars rarely used. This is despite the vital potential of radars in adverse weather conditions, as well as their ability to simultaneously measure an object's range and radial velocity seamlessly. As radar signals have not been exploited very much so far, there is a lack of available benchmark data. However, recently, there has been a lot of interest in applying radar data as input to various deep learning algorithms, as more datasets are being provided. To this end, this paper presents a survey of various deep learning approaches processing radar signals to accomplish some significant tasks in an autonomous driving application, such as detection and classification. We have itemized the review based on different radar signal representations, as it is one of the critical aspects while using radar data with deep learning models. Furthermore, we give an extensive review of the recent deep learning-based multi-sensor fusion models exploiting radar signals and camera images for object detection tasks. We then provide a summary of the available datasets containing radar data. Finally, we discuss the gaps and important innovations in the reviewed papers and highlight some possible future research prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
澄子完成签到 ,获得积分10
2秒前
月落星沉完成签到 ,获得积分10
2秒前
自豪的樱桃完成签到,获得积分10
2秒前
SciGPT应助susu采纳,获得10
3秒前
科目三应助标致碧曼采纳,获得10
4秒前
4秒前
yly发布了新的文献求助10
4秒前
4秒前
独特的蛋挞完成签到,获得积分10
5秒前
冬青完成签到,获得积分10
6秒前
李健的小迷弟应助橘猫采纳,获得10
6秒前
二二二完成签到 ,获得积分10
6秒前
niuniuniu完成签到,获得积分10
8秒前
科研通AI6应助WQ采纳,获得30
8秒前
冬青发布了新的文献求助10
9秒前
9秒前
打打应助小鹿乱撞采纳,获得10
9秒前
xin完成签到,获得积分10
10秒前
feifei发布了新的文献求助10
10秒前
10秒前
11秒前
叶叶发布了新的文献求助10
11秒前
FaFa发布了新的文献求助10
11秒前
Orange应助lllllllll采纳,获得10
12秒前
会撒娇的含烟完成签到,获得积分10
12秒前
宵荷完成签到,获得积分10
12秒前
细心的傥完成签到,获得积分10
12秒前
瘦瘦的问安完成签到 ,获得积分10
13秒前
Dreamable完成签到,获得积分10
13秒前
温梦花雨发布了新的文献求助10
14秒前
KevinSun完成签到,获得积分10
14秒前
令狐翠发布了新的文献求助10
15秒前
左安完成签到,获得积分10
15秒前
极品男大发布了新的文献求助10
15秒前
15秒前
Melody关注了科研通微信公众号
16秒前
普雅花的等待完成签到,获得积分10
16秒前
16秒前
于东发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4949142
求助须知:如何正确求助?哪些是违规求助? 4212432
关于积分的说明 13098712
捐赠科研通 3993910
什么是DOI,文献DOI怎么找? 2186258
邀请新用户注册赠送积分活动 1201459
关于科研通互助平台的介绍 1115092