Detection of Central Pulmonary Embolism on Non-Contrast CT

医学 肺栓塞 放射科 背景(考古学) 管腔(解剖学) 对比度(视觉) 心脏病学 内科学 计算机科学 生物 古生物学 人工智能
作者
Remon Zaher Elia,Hend Galal Eldeen Mohamed Ali Hassan,Remon Nader Nathan Samuel
出处
期刊:QJM: An International Journal of Medicine [Oxford University Press]
卷期号:114 (Supplement_1)
标识
DOI:10.1093/qjmed/hcab106.062
摘要

Abstract Background Pulmonary embolism (PE) is a common condition with considerable morbidity and mortality; it is more often diagnosed post-mortem by pathologists than in vivo by clinicians. Prompt and accurate diagnosis is difficult because PE may be clinically silent, the symptoms are vague and nonspecific, and in addition there is no definitive, non-invasive diagnostic test to establish its diagnosis. Objectives The aim of this study is to discuss the reliability and clinical effectiveness of the incidental detection of a PE on non-contrast CT which could be advantageous in the emergent context and also in patients with pre-existing renal disease or known allergies to contrast agents in a situation without viable alternative. Patients and Methods Results In our study CTA was used as the method of choice in detection of central pulmonary embolism in highly suspected pulmonary embolism in twenty patients and we compared it with pre contrast scan to identify non contrast CT reliability in detection of central pulmonary embolism. Our study showed that non contrast CT chest have a good role in detection of central pulmonary embolism as hyper dense lumen sign. Conclusion Unenhanced MDCT is an alternative approach for the diagnosis of acute central PE when CTPA is inaccessible or contraindicated. In our study Non-contrast chest CT scans have good role in evaluation of PE through detection the hyper dense lumen sign that is a good indicator of acute pulmonary thromboembolism particularly in cases involving the central pulmonary arteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一期一会完成签到,获得积分10
刚刚
Alex发布了新的文献求助10
刚刚
陈曦完成签到,获得积分10
2秒前
混吃等死研究生完成签到,获得积分10
3秒前
加厚加大完成签到 ,获得积分10
3秒前
Stella发布了新的文献求助30
4秒前
4秒前
6秒前
大模型应助Cuijy123采纳,获得10
6秒前
Miller完成签到,获得积分10
8秒前
9秒前
Li发布了新的文献求助10
10秒前
apple完成签到,获得积分10
10秒前
guan发布了新的文献求助10
11秒前
12秒前
CipherSage应助科研通管家采纳,获得10
15秒前
Miller发布了新的文献求助10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
cdercder应助科研通管家采纳,获得20
15秒前
华仔应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
唯为应助科研通管家采纳,获得10
15秒前
16秒前
feather完成签到,获得积分20
16秒前
科研通AI5应助兔巴哥采纳,获得10
18秒前
19秒前
CodeCraft应助清脆的书桃采纳,获得80
19秒前
19秒前
20秒前
feather发布了新的文献求助10
21秒前
Serena完成签到 ,获得积分10
22秒前
23秒前
haku发布了新的文献求助10
23秒前
shuang完成签到 ,获得积分10
24秒前
受伤灵薇完成签到,获得积分10
25秒前
鑫缘发布了新的文献求助10
27秒前
所所应助xiaoyan采纳,获得10
27秒前
28秒前
28秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816942
求助须知:如何正确求助?哪些是违规求助? 3360342
关于积分的说明 10407653
捐赠科研通 3078322
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 814001
科研通“疑难数据库(出版商)”最低求助积分说明 767958