Passive radiative cooling below ambient air temperature under direct sunlight

辐射冷却 阳光 被动冷却 环境科学 天空 大气科学 主动冷却 白天 材料科学 辐射传输 热的 光学 气象学 空气冷却 物理 热力学
作者
Aaswath Raman,Marc Abou Anoma,Linxiao Zhu,Eden Rephaeli,Shanhui Fan
出处
期刊:Nature [Springer Nature]
卷期号:515 (7528): 540-544 被引量:2030
标识
DOI:10.1038/nature13883
摘要

Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
刚刚
调皮冷风发布了新的文献求助10
刚刚
小平发布了新的文献求助10
刚刚
北极光发布了新的文献求助10
1秒前
1秒前
wh发布了新的文献求助10
2秒前
Jenny完成签到,获得积分10
2秒前
tmw发布了新的文献求助10
4秒前
Brave发布了新的文献求助10
5秒前
5秒前
优美的半仙完成签到,获得积分10
6秒前
foxp3发布了新的文献求助10
6秒前
远方发布了新的文献求助10
6秒前
优雅山灵应助黄花采纳,获得30
7秒前
杨yang发布了新的文献求助10
7秒前
SciGPT应助wonder采纳,获得10
9秒前
莫听南发布了新的文献求助10
9秒前
9秒前
华仔应助神勇饼干采纳,获得10
10秒前
费勒完成签到,获得积分10
10秒前
zeroayanami0完成签到,获得积分10
14秒前
16秒前
17秒前
17秒前
磊磊磊发布了新的文献求助10
18秒前
18秒前
18秒前
波吉OvO完成签到,获得积分10
18秒前
科研通AI2S应助JXDYYZK采纳,获得10
18秒前
twk发布了新的文献求助10
20秒前
wonder完成签到,获得积分10
20秒前
沉静的又莲完成签到,获得积分10
21秒前
22秒前
feng发布了新的文献求助10
22秒前
24秒前
致李峋完成签到 ,获得积分10
24秒前
25秒前
秋雪瑶应助香蕉半蕾采纳,获得10
25秒前
27秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 1000
Guide to Using WVASE Spectroscopic Ellipsometry Data Acquisition and Analysis Software 600
De l'emploi d'une table chromatique pour les tâches de sang (une planche hors texte) 500
Multifunctionality Agriculture: A New Paradigm for European Agriculture and Rural Development 500
grouting procedures for ground source heat pump 500
ANDA Litigation: Strategies and Tactics for Pharmaceutical Patent Litigators Second 版本 500
中国志愿服务发展报告(2022~2023) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2337478
求助须知:如何正确求助?哪些是违规求助? 2026817
关于积分的说明 5072346
捐赠科研通 1774796
什么是DOI,文献DOI怎么找? 887885
版权声明 555919
科研通“疑难数据库(出版商)”最低求助积分说明 473377