Passive radiative cooling below ambient air temperature under direct sunlight

辐射冷却 阳光 被动冷却 环境科学 天空 大气科学 主动冷却 白天 材料科学 辐射传输 热的 光学 气象学 空气冷却 物理 热力学
作者
Aaswath P. Raman,Marc Abou Anoma,Linxiao Zhu,Eden Rephaeli,Shanhui Fan
出处
期刊:Nature [Nature Portfolio]
卷期号:515 (7528): 540-544 被引量:2684
标识
DOI:10.1038/nature13883
摘要

Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助wakaka采纳,获得10
刚刚
田様应助YX采纳,获得10
1秒前
科研通AI5应助Fox采纳,获得10
2秒前
乔心发布了新的文献求助10
4秒前
长命百岁完成签到 ,获得积分10
4秒前
5秒前
zhongzhong完成签到,获得积分10
6秒前
hanchangcun发布了新的文献求助10
6秒前
iNk应助乔心采纳,获得10
8秒前
iNk应助乔心采纳,获得10
8秒前
春景当思完成签到,获得积分10
8秒前
科研通AI2S应助乔心采纳,获得10
8秒前
8秒前
David完成签到,获得积分10
10秒前
糊涂涂完成签到 ,获得积分10
11秒前
11秒前
YX完成签到,获得积分20
11秒前
今后应助朱忠华采纳,获得10
12秒前
Hello应助22222采纳,获得10
12秒前
13秒前
小龙完成签到,获得积分10
14秒前
wakaka发布了新的文献求助10
15秒前
aa发布了新的文献求助10
18秒前
20秒前
21秒前
23秒前
rose完成签到,获得积分10
25秒前
26秒前
小龙发布了新的文献求助20
27秒前
xxhhh发布了新的文献求助10
29秒前
ZhChHooooi发布了新的文献求助10
30秒前
wakaka完成签到,获得积分10
30秒前
bkagyin应助hzz采纳,获得10
30秒前
kirazou完成签到,获得积分10
30秒前
山楂完成签到,获得积分10
32秒前
852应助FF采纳,获得10
34秒前
安静的迎南完成签到,获得积分10
35秒前
乐乐应助科研通管家采纳,获得10
36秒前
NexusExplorer应助科研通管家采纳,获得10
36秒前
Rye227应助科研通管家采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327032
关于积分的说明 10229289
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669728
邀请新用户注册赠送积分活动 799249
科研通“疑难数据库(出版商)”最低求助积分说明 758757