Learning deep features and topological structure of cells for clustering of scRNA-sequencing data

可解释性 计算机科学 人工智能 子空间拓扑 深度学习 聚类分析 图形 自编码 又称作 机器学习 特征(语言学) 模式识别(心理学) 算法 理论计算机科学 哲学 语言学 图书馆学
作者
Haiyue Wang,Xiaoke Ma
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:8
标识
DOI:10.1093/bib/bbac068
摘要

Single-cell RNA sequencing (scRNA-seq) measures gene transcriptome at the cell level, paving the way for the identification of cell subpopulations. Although deep learning has been successfully applied to scRNA-seq data, these algorithms are criticized for the undesirable performance and interpretability of patterns because of the noises, high-dimensionality and extraordinary sparsity of scRNA-seq data. To address these issues, a novel deep learning subspace clustering algorithm (aka scGDC) for cell types in scRNA-seq data is proposed, which simultaneously learns the deep features and topological structure of cells. Specifically, scGDC extends auto-encoder by introducing a self-representation layer to extract deep features of cells, and learns affinity graph of cells, which provide a better and more comprehensive strategy to characterize structure of cell types. To address heterogeneity of scRNA-seq data, scGDC projects cells of various types onto different subspaces, where types, particularly rare cell types, are well discriminated by utilizing generative adversarial learning. Furthermore, scGDC joins deep feature extraction, structural learning and cell type discovery, where features of cells are extracted under the guidance of cell types, thereby improving performance of algorithms. A total of 15 scRNA-seq datasets from various tissues and organisms with the number of cells ranging from 56 to 63 103 are adopted to validate performance of algorithms, and experimental results demonstrate that scGDC significantly outperforms 14 state-of-the-art methods in terms of various measurements (on average 25.51% by improvement), where (rare) cell types are significantly associated with topology of affinity graph of cells. The proposed model and algorithm provide an effective strategy for the analysis of scRNA-seq data (The software is coded using python, and is freely available for academic https://github.com/xkmaxidian/scGDC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助毛毛虫采纳,获得10
1秒前
冰魂应助熹熹采纳,获得10
1秒前
认真果汁发布了新的文献求助10
1秒前
攀攀完成签到,获得积分10
2秒前
重要的炳完成签到 ,获得积分10
3秒前
WANG发布了新的文献求助10
4秒前
6秒前
ShellyMaya完成签到 ,获得积分10
6秒前
7秒前
7秒前
铃儿响叮当完成签到,获得积分10
7秒前
背后归尘完成签到,获得积分10
9秒前
内向的小凡完成签到,获得积分0
10秒前
小小超发布了新的文献求助30
11秒前
天天开心发布了新的文献求助10
11秒前
双丁宝贝发布了新的文献求助30
12秒前
林夕完成签到 ,获得积分10
12秒前
14秒前
boss完成签到,获得积分10
16秒前
无限的千凝完成签到 ,获得积分10
17秒前
科研通AI5应助顺心柠檬采纳,获得10
18秒前
科研通AI5应助贺小刚采纳,获得10
19秒前
20秒前
毛毛虫发布了新的文献求助10
21秒前
jor666完成签到,获得积分10
22秒前
23秒前
zero灬给leolin的求助进行了留言
24秒前
Arthur完成签到 ,获得积分10
25秒前
26秒前
迅速云朵发布了新的文献求助10
27秒前
通不通la发布了新的文献求助10
28秒前
29秒前
AlwaysKim发布了新的文献求助10
33秒前
啊哈哈哈哈完成签到,获得积分10
36秒前
36秒前
我是老大应助NeuroYan采纳,获得50
37秒前
AlwaysKim完成签到,获得积分10
40秒前
sszz发布了新的文献求助10
41秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
传奇3应助科研通管家采纳,获得10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783164
求助须知:如何正确求助?哪些是违规求助? 3328499
关于积分的说明 10236697
捐赠科研通 3043596
什么是DOI,文献DOI怎么找? 1670599
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119