The development of on-line surface defect detection system for jujubes based on hyperspectral images

高光谱成像 主成分分析 人工智能 支持向量机 模式识别(心理学) 人工神经网络 计算机科学 遥感 地质学
作者
Quoc Thien Pham,Nai-Shang Liou
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106743-106743 被引量:51
标识
DOI:10.1016/j.compag.2022.106743
摘要

This paper presents the development of an on-line surface defect system using hyperspectral images for jujubes. A push-broom hyperspectral system was built for collecting hyperspectral image data and detecting skin defects of jujube online. Hyperspectral images with an effective wavelength range of 468–950 nm were obtained for jujubes with normal surface or common skin defect types (i.e., russeting, decay, white fungus, black fungus and crack). Support vector machine (SVM) and artificial neural networks (ANN) models were used to classify surface defects of jujubes. The classification accuracies, with the use of full wavelength range, of ANN and SVM models for jujube skin defects are 96.5% and 96.3% respectively. The times required for processing one jujube face are about 25 and 320 s for ANN and SVM models respectively. To reduce the computation time of online classification tasks, spectral bands were selected from a wavelength range of 468–760 nm with equal band intervals or by the principal component analysis (PCA) method. Experimental results showed that the accuracy of SVM and ANN models using 14 bands (469, 491, 513, 535, 558, 580, 602, 624, 646, 668, 691, 713, 735 and 757 nm), selected by equal wavelength intervals, were 94.4% and 95% respectively. And the accuracies of ANN and SVM models with 14 bands (470, 493, 534, 555, 590, 623, 632, 654, 672, 674, 683, 696, 707 and 747) selected by PCA are 95% and 94.6% respectively. The classification time, with the use of 14 bands, of ANN and SVM models for jujube skin defects reduced to 16.6 and 30 s respectively. The online line scanning and classification hyperspectral imaging system can be used for surface defect detection of other fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lw完成签到,获得积分10
刚刚
刚刚
丘比特应助普外科老白采纳,获得10
刚刚
1秒前
capricorn完成签到,获得积分20
1秒前
3秒前
Ava应助林读书采纳,获得10
3秒前
唐诗阅完成签到,获得积分10
3秒前
4秒前
喜宝发布了新的文献求助10
5秒前
Feix发布了新的文献求助10
6秒前
ss完成签到,获得积分10
6秒前
老狗发布了新的文献求助10
8秒前
酷波er应助王浩宇采纳,获得10
8秒前
9秒前
科研通AI5应助刘敏小七采纳,获得10
9秒前
VDC完成签到,获得积分0
10秒前
11秒前
邱邱完成签到,获得积分20
12秒前
思源应助Ailin采纳,获得10
12秒前
13秒前
今后应助魈maker采纳,获得10
13秒前
有魅力的念烟完成签到 ,获得积分10
13秒前
科研通AI5应助破晓采纳,获得10
13秒前
科研通AI2S应助xuyan采纳,获得10
16秒前
17秒前
莫一城发布了新的文献求助10
17秒前
水水完成签到,获得积分10
17秒前
17秒前
18秒前
老狗完成签到,获得积分10
19秒前
魏师完成签到,获得积分0
19秒前
20秒前
勇敢牛牛发布了新的文献求助30
21秒前
21秒前
青灿笑发布了新的文献求助10
21秒前
23秒前
morlison完成签到,获得积分10
23秒前
24秒前
沉静的煎蛋完成签到,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334596
关于积分的说明 10271003
捐赠科研通 3051046
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802571
科研通“疑难数据库(出版商)”最低求助积分说明 760777