稳健性(进化)
最大功率原理
计算机科学
最大功率点跟踪
电压
人工神经网络
光伏系统
功率(物理)
控制理论(社会学)
点(几何)
人工智能
数学
电气工程
工程类
生物化学
化学
物理
几何学
控制(管理)
量子力学
逆变器
基因
作者
K. Rafeeq Ahmed,Farrukh Sayeed,K. Logavani,T. J. Catherine,Shimpy Ralhan,Mahesh Singh,R. Thandaiah Prabu,Barathi Subramanian,Adane Kassa
摘要
In this paper, we develop a deep learning model using back propagation neural network (BPNN) that helps to obtain maximum power point. This deep learning model aims to maximise the output power from the solar grids when the panels are connected with the boost converter under different variable load conditions. BPNN-DL enables the prediction of reference voltage at different weather conditions for severing the various output power that ensures maximum power with stable output voltage. The proposed BPNN-DL is tested under different conditions to estimate the robustness of the modules under internal/external interferences. The results of the simulation show that the proposed method achieves maximum output power from each panel compared with existing methods in terms of regression analysis on training, testing, and validation.
科研通智能强力驱动
Strongly Powered by AbleSci AI