A comprehensive review of artificial intelligence and network based approaches to drug repurposing in Covid-19

药物重新定位 重新调整用途 计算机科学 药物发现 药物开发 人工智能 药品 机器学习 数据科学 生物信息学 药理学 生物 生态学
作者
Faheem Ahmed,Afaque Manzoor Soomro,Abdul Rahim Chethikkattuveli Salih,Anupama Samantasinghar,Arun Asif,In Suk Kang,Kyung Hyun Choi
出处
期刊:Biomedicine & Pharmacotherapy [Elsevier BV]
卷期号:153: 113350-113350 被引量:1
标识
DOI:10.1016/j.biopha.2022.113350
摘要

Conventional drug discovery and development is tedious and time-taking process; because of which it has failed to keep the required pace to mitigate threats and cater demands of viral and re-occurring diseases, such as Covid-19. The main reasons of this delay in traditional drug development are: high attrition rates, extensive time requirements, and huge financial investment with significant risk. The effective solution to de novo drug discovery is drug repurposing. Previous studies have shown that the network-based approaches and analysis are versatile platform for repurposing as the network biology is used to model the interactions between variety of biological concepts. Herein, we provide a comprehensive background of machine learning and deep learning in drug repurposing while specifically focusing on the applications of network-based approach to drug repurposing in Covid-19, data sources, and tools used. Furthermore, use of network proximity, network diffusion, and AI on network-based drug repurposing for Covid-19 is well-explained. Finally, limitations of network-based approaches in general and specific to network are stated along with future recommendations for better network-based models. Process of drug repurposing in Covid-19. The data related to drugs, diseases, proteins, and genes etc. are extracted from different data sources (databases) followed use of different repurposing methods. Repurposing methods are used to find out the potential drugs which are then validated in in-vitro (2D or 3D) cell culture and in-vivo animal models. Finally, the shortlisted drugs are forwarded to clinical trials and successful drugs are repurposed • Drug repurposing is an effective and preferable alternative to de-novo drug discovery. • A systematic review of different strategies to drug repurposing for Covid-19 is given. • Limitations of repurposing approaches with recommendations are presented for Covid-19. • Network-based drug repurposing for Covid-19 is successful, easy to explain and interpret.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助ponytail采纳,获得10
刚刚
123发布了新的文献求助10
3秒前
滕侑林发布了新的文献求助10
3秒前
Ava应助搞怪尔芙采纳,获得10
4秒前
5秒前
鲤鱼寒荷完成签到,获得积分10
5秒前
petiteblanche完成签到,获得积分10
5秒前
5秒前
风中天宇完成签到,获得积分20
5秒前
6秒前
星辰大海应助sc采纳,获得10
7秒前
合适的涫关注了科研通微信公众号
8秒前
10秒前
11秒前
舒远发布了新的文献求助30
11秒前
风中天宇发布了新的文献求助10
13秒前
乐乱完成签到 ,获得积分10
13秒前
科研通AI5应助ponytail采纳,获得10
13秒前
妮妮发布了新的文献求助10
13秒前
李健的小迷弟应助嘿嘿嘿采纳,获得10
14秒前
Somnolence咩完成签到,获得积分10
14秒前
Mark_He发布了新的文献求助10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
伶俐千柳应助科研通管家采纳,获得10
16秒前
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
李健的小迷弟应助lxz采纳,获得10
17秒前
斩荆披棘完成签到,获得积分10
19秒前
kido完成签到,获得积分10
21秒前
搞怪尔芙发布了新的文献求助10
21秒前
深情安青应助平安如意采纳,获得10
23秒前
jiujiu完成签到,获得积分10
26秒前
27秒前
Voskov发布了新的文献求助10
28秒前
合适的涫发布了新的文献求助10
34秒前
沅芷完成签到,获得积分10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784481
求助须知:如何正确求助?哪些是违规求助? 3329665
关于积分的说明 10242830
捐赠科研通 3045021
什么是DOI,文献DOI怎么找? 1671569
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391