scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data

聚类分析 计算机科学 人工智能 特征学习 稳健性(进化) 判别式 特征(语言学) 模式识别(心理学) 数据挖掘 机器学习 生物化学 化学 语言学 哲学 基因
作者
Hui Wan,Liang Chen,Minghua Deng
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (6): 1575-1583 被引量:14
标识
DOI:10.1093/bioinformatics/btac011
摘要

The rapid development of single-cell RNA sequencing (scRNA-seq) makes it possible to study the heterogeneity of individual cell characteristics. Cell clustering is a vital procedure in scRNA-seq analysis, providing insight into complex biological phenomena. However, the noisy, high-dimensional and large-scale nature of scRNA-seq data introduces challenges in clustering analysis. Up to now, many deep learning-based methods have emerged to learn underlying feature representations while clustering. However, these methods are inefficient when it comes to rare cell type identification and barely able to fully utilize gene dependencies or cell similarity integrally. As a result, they cannot detect a clear cell type structure which is required for clustering accuracy as well as downstream analysis.Here, we propose a novel scRNA-seq clustering algorithm called scNAME which incorporates a mask estimation task for gene pertinence mining and a neighborhood contrastive learning framework for cell intrinsic structure exploitation. The learned pattern through mask estimation helps reveal uncorrupted data structure and denoise the original single-cell data. In addition, the randomly created augmented data introduced in contrastive learning not only helps improve robustness of clustering, but also increases sample size in each cluster for better data capacity. Beyond this, we also introduce a neighborhood contrastive paradigm with an offline memory bank, global in scope, which can inspire discriminative feature representation and achieve intra-cluster compactness, yet inter-cluster separation. The combination of mask estimation task, neighborhood contrastive learning and global memory bank designed in scNAME is conductive to rare cell type detection. The experimental results of both simulations and real data confirm that our method is accurate, robust and scalable. We also implement biological analysis, including marker gene identification, gene ontology and pathway enrichment analysis, to validate the biological significance of our method. To the best of our knowledge, we are among the first to introduce a gene relationship exploration strategy, as well as a global cellular similarity repository, in the single-cell field.An implementation of scNAME is available from https://github.com/aster-ww/scNAME.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜗牛发布了新的文献求助30
2秒前
等下完这场雨完成签到,获得积分10
3秒前
赘婿应助yy采纳,获得10
3秒前
豆子完成签到,获得积分10
4秒前
SciGPT应助吃花生酱的猫采纳,获得10
11秒前
11秒前
专玩对抗路完成签到,获得积分10
17秒前
豆子完成签到,获得积分10
20秒前
领导范儿应助lkgxwpf采纳,获得10
23秒前
蜗牛完成签到 ,获得积分20
26秒前
32秒前
33秒前
000完成签到,获得积分10
35秒前
Suica发布了新的文献求助10
35秒前
38秒前
40秒前
Lucas应助科研通管家采纳,获得10
40秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
41秒前
陆王牛马发布了新的文献求助20
43秒前
悦耳孤萍发布了新的文献求助10
44秒前
李健应助天空没有极限采纳,获得10
44秒前
46秒前
46秒前
Yunny关注了科研通微信公众号
49秒前
wk完成签到,获得积分10
50秒前
科研狗完成签到,获得积分10
50秒前
兔BF完成签到,获得积分10
51秒前
52秒前
尊敬的半梅完成签到 ,获得积分10
52秒前
54秒前
Owen应助Roseaiwade采纳,获得10
54秒前
欣喜的书芹完成签到 ,获得积分10
55秒前
领导范儿应助悦耳孤萍采纳,获得10
56秒前
隐形的巴豆完成签到,获得积分10
57秒前
58秒前
1分钟前
1分钟前
chen完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781847
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231205
捐赠科研通 3042315
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808