Augmented Graph Neural Network with hierarchical global-based residual connections

计算机科学 联营 残余物 理论计算机科学 图形 人工神经网络 平滑的 图形属性 人工智能 算法 折线图 电压图 计算机视觉
作者
Asmaa Rassil,Hiba Chougrad,Hamid Zouaki
出处
期刊:Neural Networks [Elsevier BV]
卷期号:150: 149-166 被引量:13
标识
DOI:10.1016/j.neunet.2022.03.008
摘要

Graph Neural Networks (GNNs) are powerful architectures for learning on graphs. They are efficient for predicting nodes, links and graphs properties. Standard GNN variants follow a message passing schema to update nodes representations using information from higher-order neighborhoods iteratively. Consequently, deeper GNNs make it possible to define high-level nodes representations generated based on local as well as distant neighborhoods. However, deeper networks are prone to suffer from over-smoothing. To build deeper GNN architectures and avoid losing the dependency between lower (the layers closer to the input) and higher (the layers closer to the output) layers, networks can integrate residual connections to connect intermediate layers. We propose the Augmented Graph Neural Network (AGNN) model with hierarchical global-based residual connections. Using the proposed residual connections, the model generates high-level nodes representations without the need for a deeper architecture. We disclose that the nodes representations generated through our proposed AGNN model are able to define an expressive all-encompassing representation of the entire graph. As such, the graph predictions generated through the AGNN model surpass considerably state-of-the-art results. Moreover, we carry out extensive experiments to identify the best global pooling strategy and attention weights to define the adequate hierarchical and global-based residual connections for different graph property prediction tasks. Furthermore, we propose a reversible variant of the AGNN model to address the extensive memory consumption problem that typically arises from training networks on large and dense graph datasets. The proposed Reversible Augmented Graph Neural Network (R-AGNN) only stores the nodes representations acquired from the output layer as opposed to saving all representations from intermediate layers as it is conventionally done when optimizing the parameters of other GNNs. We further refine the definition of the backpropagation algorithm to fit the R-AGNN model. We evaluate the proposed models AGNN and R-AGNN on benchmark Molecular, Bioinformatics and Social Networks datasets for graph classification and achieve state-of-the-art results. For instance the AGNN model realizes improvements of +39% on IMDB-MULTI reaching 91.7% accuracy and +16% on COLLAB reaching 96.8% accuracy compared to other GNN variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qiuyajing完成签到,获得积分10
刚刚
手抓饼啊发布了新的文献求助10
1秒前
2秒前
Leo发布了新的文献求助10
4秒前
月亮在o完成签到 ,获得积分10
6秒前
湛刘佳完成签到 ,获得积分10
6秒前
昭谏发布了新的文献求助10
8秒前
unflycn完成签到,获得积分10
11秒前
15秒前
温婉的凝丹完成签到 ,获得积分10
17秒前
blue-鱼完成签到,获得积分10
21秒前
orixero应助tangz采纳,获得10
22秒前
23秒前
Suc发布了新的文献求助10
23秒前
手抓饼啊完成签到,获得积分10
23秒前
烟花应助Lin采纳,获得10
25秒前
cbq完成签到 ,获得积分10
26秒前
海猫食堂完成签到,获得积分10
27秒前
fffff发布了新的文献求助10
28秒前
所所应助鱼在哪儿采纳,获得10
29秒前
32秒前
科研通AI2S应助好好采纳,获得10
33秒前
34秒前
步步完成签到 ,获得积分10
35秒前
爱学习的瑞瑞子完成签到 ,获得积分10
35秒前
领导范儿应助乘风破浪采纳,获得10
36秒前
xie发布了新的文献求助10
36秒前
kk发布了新的文献求助10
39秒前
dream发布了新的文献求助10
40秒前
41秒前
41秒前
情怀应助車侖采纳,获得10
43秒前
复杂的方盒完成签到 ,获得积分10
43秒前
唐飒发布了新的文献求助10
44秒前
45秒前
Lin发布了新的文献求助10
46秒前
shuan完成签到,获得积分10
46秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
FashionBoy应助科研通管家采纳,获得10
50秒前
共享精神应助科研通管家采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779606
求助须知:如何正确求助?哪些是违规求助? 3325116
关于积分的说明 10221269
捐赠科研通 3040209
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535