First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI<sub>3</sub> monolayer

自旋电子学 凝聚态物理 带隙 材料科学 各向异性 铁磁性 半导体 磁性半导体 物理 光电子学 光学
作者
Na Wang,Hui Xu,Qixiang Yang,Mao-Lian Zhang,Zijing Lin
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:71 (20): 207102-207102
标识
DOI:10.7498/aps.71.20221019
摘要

Because the single-layer CrI<sub>3</sub> is a half semiconductor with indirect band gap and magnetic anisotropy, it has received much attention in the spintronic, magneto-electronic and magnetic storage applications. However, the knowledge of the dependence of carrier mobility and optical property on strain is still rather limited. The uniaxial and biaxial strain dependence of electronic, transport, optical and magnetic properties of single-layer CrI<sub>3</sub> are systematically investigated by using first-principles calculations, and the results are compared with experimental results. The electronic structures under different strains are first calculated by using the accurate HSE06 functional, then the carrier mobility is estimated by the deformation potential theory and the dielectric function is obtained to estimate the optical absorption especially in the visible light range. Finally, the magnetic anisotropy energy used to estimate the magneto-electronic properties is studied by the Perdew-Bueke-Ernzerhof functional including the spin-orbit coupling. It is found that the ferromagnetic CrI<sub>3</sub> is an indirect and half semiconductor with band gap 2.024 eV,<inline-formula><tex-math id="M1">\begin{document}$ \Delta {\text{CBM}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20221019_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20221019_M1.png"/></alternatives></inline-formula>= 1.592 eV, <inline-formula><tex-math id="M2">\begin{document}$ \Delta {\text{VBM}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20221019_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20221019_M2.png"/></alternatives></inline-formula>= 0.238 eV and can be driven into AF-Néel antiferromagnetic phase by applying –6% to –8% (compressive) biaxial stain, exhibiting excellent agreement with the results from the literature. It is found that of single-layer CrI<sub>3</sub> has very low carrier mobility with a value within 10 cm<sup>2</sup>·V<sup>–1</sup>·s<sup>–1</sup> due to the large effective mass and small in-plane stiffness can be remarkably increased by increasing biaxial compression strain attributed to the reduced effective mass. A high electron mobility 174 cm<sup>2</sup>·V<sup>–1</sup>·s<sup>–1</sup> is obtained in the zigzag direction by applying a –8% biaxial strain reaching the level of monolayer MoS<sub>2</sub>. The calculated imaginary component of dielectric function along the <i>x </i>(<i>y</i>) direction having two peaks (I, II) in the visible light range is obviously different from that along the <i>z</i> direction, indicating that the single-layer CrI<sub>3</sub> has optical anisotropy, demonstrating the good agreement with results from the literature. It is found that the imaginary part of dielectric function shows that an obvious redshift and peak (I, II) values strongly increase with the increase of compressive strain (biaxial), showing good agreement with the calculated electronic structures and indicating that monolayer CrI<sub>3</sub> possesses high optical adsorption of visible light under a compressive biaxial strain. Furthermore, it is found that the magnetic anisotropy energy of monolayer CrI<sub>3</sub> mainly stemming from the orbital magnetic moment of Cr ions remarkably increases from 0.7365 to 1.08 meV/Cr with g compressive strain increasing. These results indicate that the optoelectronic property of single-layer CrI<sub>3</sub> can be greatly improved by applying biaxial compressive strain and the single-layer CrI<sub>3</sub> is a promising material for applications in microelectronic, optoelectronic and magnetic storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助liuq采纳,获得10
1秒前
吴世龙发布了新的文献求助10
2秒前
粗犷的灵松完成签到 ,获得积分10
2秒前
脑三问发布了新的文献求助10
2秒前
Luoxin发布了新的文献求助10
2秒前
yang应助srww33采纳,获得10
4秒前
5秒前
5秒前
雅2018完成签到 ,获得积分10
6秒前
情怀应助笨笨胡萝卜采纳,获得10
7秒前
7秒前
steven发布了新的文献求助10
8秒前
静静发布了新的文献求助10
9秒前
小女子常戚戚完成签到,获得积分10
9秒前
merlinye完成签到,获得积分10
10秒前
耿耿完成签到 ,获得积分10
10秒前
11秒前
Yankexin发布了新的文献求助40
12秒前
pkq完成签到,获得积分10
12秒前
13秒前
英姑应助Pursue采纳,获得10
14秒前
木歌应助小七采纳,获得10
14秒前
九面玲珑发布了新的文献求助20
15秒前
YYYYYaaa完成签到,获得积分10
16秒前
maochu发布了新的文献求助10
18秒前
赘婿应助脑三问采纳,获得10
19秒前
20秒前
tianyan完成签到,获得积分20
21秒前
祁曼岚完成签到,获得积分10
21秒前
倒霉兔子完成签到,获得积分10
21秒前
Lucas应助石珊的豆豆采纳,获得10
22秒前
天真的发卡完成签到 ,获得积分10
22秒前
22秒前
huzilu关注了科研通微信公众号
23秒前
srww33完成签到,获得积分20
23秒前
haru完成签到,获得积分10
24秒前
24秒前
乐乐应助科研小迷糊采纳,获得10
25秒前
小二郎应助静静采纳,获得10
26秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2409771
求助须知:如何正确求助?哪些是违规求助? 2105487
关于积分的说明 5318258
捐赠科研通 1833004
什么是DOI,文献DOI怎么找? 913305
版权声明 560765
科研通“疑难数据库(出版商)”最低求助积分说明 488375