Manganese Oxide-Based Catalysts for Soot Oxidation: A Review on the Recent Advances and Future Directions

烟灰 催化作用 燃烧 柴油机排气 氧化物 汽油 柴油 化学工程 化学 无机化学 材料科学 有机化学 工程类
作者
Abid Ali Khaskheli,Lei Xu,Dong Liu
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (14): 7362-7381 被引量:24
标识
DOI:10.1021/acs.energyfuels.2c01492
摘要

Soot particles generated by combustion engines, such as gasoline direct injection engines (GDIs) and diesel engines, must be removed from the exhaust to meet the tightened emissions standards. The particulate filters with coated catalysts are common and successful techniques for the oxidation and removal of soot, during which the catalytic performance of the used catalyst plays a critical role. This review aims to discuss the soot oxidation behavior using manganese oxides as catalysts considering their beneficial natures of high catalytic oxidation activities, cost effectiveness, and environmental friendliness. This review begins with a brief discussion on how the various influential factors (e.g., soot composition, soot–catalyst mixing ratios, contact conditions, and gaseous reactions) could affect the soot catalyst activities. After that, a detailed introduction to various kinds of manganese oxide-based catalysts, including pure manganese oxides and types of perovskites, composites, and mixed, as well as manganese oxides decorated by nanoparticles or doped with metals, was provided, with the focus on the catalytic performances of each kind of catalyst and the catalytic mechanisms. The thermal stabilities of different manganese oxide-based catalysts were then briefly introduced. Finally, remarkable results and interesting findings were summarized, which are expected to provide valuable guidance for the synthesis, design, and performance optimization of manganese oxide-based catalysts for soot catalytic combustion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
lty发布了新的文献求助10
7秒前
沉静的颦完成签到 ,获得积分10
8秒前
Gaye完成签到,获得积分20
9秒前
11秒前
孙小宁完成签到 ,获得积分10
12秒前
zz发布了新的文献求助20
13秒前
量子星尘发布了新的文献求助10
16秒前
seine发布了新的文献求助10
17秒前
17秒前
wennuan0913完成签到 ,获得积分10
19秒前
丁冠文发布了新的文献求助10
22秒前
23秒前
淡定从凝完成签到,获得积分10
24秒前
Hello应助肖福艳采纳,获得10
27秒前
28秒前
不想说完成签到,获得积分10
28秒前
28秒前
29秒前
SciGPT应助KL1N采纳,获得10
30秒前
沈达完成签到,获得积分10
31秒前
水门发布了新的文献求助10
32秒前
英吉利25发布了新的文献求助10
33秒前
liushuang_发布了新的文献求助10
34秒前
Jasper应助伊丽莎白采纳,获得10
34秒前
所所应助赵文若采纳,获得10
34秒前
lty完成签到,获得积分10
37秒前
科研小能手完成签到,获得积分20
37秒前
汉堡包应助liushuang_采纳,获得10
40秒前
41秒前
量子星尘发布了新的文献求助10
41秒前
Lea发布了新的文献求助10
44秒前
水门完成签到,获得积分10
44秒前
46秒前
嘉人完成签到 ,获得积分10
47秒前
端庄的心情完成签到 ,获得积分10
47秒前
科研通AI5应助shlz采纳,获得10
52秒前
善学以致用应助875728314采纳,获得10
53秒前
赵文若发布了新的文献求助10
53秒前
54秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863397
求助须知:如何正确求助?哪些是违规求助? 3405716
关于积分的说明 10646325
捐赠科研通 3129438
什么是DOI,文献DOI怎么找? 1725898
邀请新用户注册赠送积分活动 831322
科研通“疑难数据库(出版商)”最低求助积分说明 779742