已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advances and Challenges in Computer Vision for Image-Based Plant Disease Detection: A Comprehensive Survey of Machine and Deep Learning Approaches

人工智能 机器学习 计算机科学 卷积神经网络 深度学习 特征提取 鉴定(生物学) 植物病害 数据科学 生物技术 生物 植物
作者
Syed Asif Ahmad Qadri,Nen‐Fu Huang,Taiba Majid Wani,Showkat Ahmad Bhat
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:22: 2639-2670 被引量:29
标识
DOI:10.1109/tase.2024.3382731
摘要

As advancements in agricultural technology unfold, machine learning and deep learning approaches are gaining interest in robust plant disease identification. Early disease detection, integral to agricultural productivity, has propelled innovations across all phases of detection. This survey paper provides a meticulous examination of plant disease detection systems, elucidating data collection methodologies and underscoring the pivotal role of datasets in model training. The narrative navigates through the complex areas of data and image processing techniques, segueing into an exploration of various segmentation methods. The survey emphasizes the importance of feature extraction and selection techniques, illustrating their efficacy in increasing classification accuracy. It examines the classification process, embracing both traditional machine learning and avant-garde deep learning methods, with a particular spotlight on Convolutional Neural Networks (CNNs). The study examines over one hundred seminal papers, anatomizing their dataset utilizations, feature considerations, and classification strategies. Overall, the paper contemplates the challenges permeating this vibrant field, addressing critical issues such as dataset diversity, model generalization, and real-world applicability. Note to Practitioners-To ensure crop health and yield, timely and precise plant disease detection is crucial. Our research, titled "Advances And Challenges in Plant Disease Detection: A Comprehensive Survey of Machine and Deep Learning Approaches", examines the critical role of datasets, advanced image processing, and segmentation techniques in disease detection. This paper presents practitioners with a guide to the latest techniques for enhanced disease detection by emphasizing the significance of feature extraction and highlighting the capabilities of convolutional neural networks (CNNs). By understanding the highlighted challenges, such as dataset diversity and model generalization, industry professionals can better equip themselves to integrate these technological advancements into real-world agricultural applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mins发布了新的文献求助10
1秒前
斯文梦寒完成签到 ,获得积分10
1秒前
SciGPT应助kid1412采纳,获得10
1秒前
123发布了新的文献求助50
2秒前
zhoudada应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
YifanWang应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
淡淡土豆应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得20
4秒前
Mic应助euar采纳,获得10
4秒前
1234完成签到,获得积分10
6秒前
年轻鞋垫发布了新的文献求助10
7秒前
eleven发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
无奈的豆沙包完成签到 ,获得积分10
10秒前
搞怪莫茗发布了新的文献求助10
11秒前
大模型应助mins采纳,获得10
12秒前
hhh完成签到 ,获得积分10
12秒前
13秒前
14秒前
落花生发布了新的文献求助10
14秒前
可靠安筠发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521964
求助须知:如何正确求助?哪些是违规求助? 4613170
关于积分的说明 14537483
捐赠科研通 4550723
什么是DOI,文献DOI怎么找? 2493886
邀请新用户注册赠送积分活动 1474924
关于科研通互助平台的介绍 1446301