CRISPR System Discovery, History, and Future Perspective

清脆的 透视图(图形) 计算生物学 数据科学 计算机科学 生物 遗传学 基因 人工智能
作者
Faizan Ali,Akhtar Hameed,Abdul Rehman,Sohaib Sarfraz,Nasir Ahmed Rajput,Muhammad Atiq
标识
DOI:10.1002/9781394209156.ch8
摘要

Chapter 8 CRISPR System Discovery, History, and Future Perspective Faizan Ali, Faizan Ali Department of Plant Pathology, University of Agriculture, Agriculture University Road, Faisalabad, 38000 PakistanSearch for more papers by this authorAkhtar Hameed, Akhtar Hameed Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture Multan, Old Shujabad Road, Multan, 59220 PakistanSearch for more papers by this authorAbdul Rehman, Abdul Rehman Department of Plant Pathology, University of Agriculture, Agriculture University Road, Faisalabad, 38000 PakistanSearch for more papers by this authorSohaib Sarfraz, Sohaib Sarfraz Department of Plant Pathology, University of Agriculture, Agriculture University Road, Faisalabad, 38000 PakistanSearch for more papers by this authorNasir A. Rajput, Nasir A. Rajput Department of Plant Pathology, University of Agriculture, Agriculture University Road, Faisalabad, 38000 PakistanSearch for more papers by this authorMuhammad Atiq, Muhammad Atiq Department of Plant Pathology, University of Agriculture, Agriculture University Road, Faisalabad, 38000 PakistanSearch for more papers by this author Faizan Ali, Faizan Ali Department of Plant Pathology, University of Agriculture, Agriculture University Road, Faisalabad, 38000 PakistanSearch for more papers by this authorAkhtar Hameed, Akhtar Hameed Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture Multan, Old Shujabad Road, Multan, 59220 PakistanSearch for more papers by this authorAbdul Rehman, Abdul Rehman Department of Plant Pathology, University of Agriculture, Agriculture University Road, Faisalabad, 38000 PakistanSearch for more papers by this authorSohaib Sarfraz, Sohaib Sarfraz Department of Plant Pathology, University of Agriculture, Agriculture University Road, Faisalabad, 38000 PakistanSearch for more papers by this authorNasir A. Rajput, Nasir A. Rajput Department of Plant Pathology, University of Agriculture, Agriculture University Road, Faisalabad, 38000 PakistanSearch for more papers by this authorMuhammad Atiq, Muhammad Atiq Department of Plant Pathology, University of Agriculture, Agriculture University Road, Faisalabad, 38000 PakistanSearch for more papers by this author Book Editor(s):Sajid Fiaz, Sajid Fiaz University of Haripur, Haripur, PakistanSearch for more papers by this authorChannapatna S. Prakash, Channapatna S. Prakash Tuskegee University, Alabama, United StatesSearch for more papers by this author First published: 29 March 2024 https://doi.org/10.1002/9781394209156.ch8 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The following chapter looks into the transformative impact of CRISPR-Cas genome editing technology on genetics, agriculture, and beyond. It explores the origins of CRISPR systems from bacterial defense mechanisms to versatile tools, emphasizing their role in bacterial immunity, viral defense, and synthetic biology. CRISPR's pivotal role in precision gene editing, with comparison to other editing technologies, application of CRISPR-based genome editing in plants, showcasing its ability to enhance traits, induce epigenetic modifications, and enable multiplex editing. The ethical considerations and responsible innovation in gene editing are discussed. Future of the CRISPR technology has the potential to redefine genetic manipulation, potentially addressing climate challenges, and propelling synthetic biology advancements. This chapter highlights CRISPR's profound potential to revolutionize molecular biology, agriculture, and biotechnology while urging careful ethical and scientific deliberation. References Araldi , R.P. , Khalil , C. , Grignet , P.H. et al. ( 2020 ). Medical applications of clustered regularly interspaced short palindromic repeats (CRISPR/Cas) tool: a comprehensive overview . Gene 745 : 144636 . 10.1016/j.gene.2020.144636 PubMedGoogle Scholar Bak , R.O. , Gomez-Ospina , N. , and Porteus , M.H. ( 2018 ). Gene editing on center stage . Trends in Genetics 34 ( 8 ): 600 – 611 . 10.1016/j.tig.2018.05.004 CASPubMedWeb of Science®Google Scholar Barrangou , R. , Fremaux , C. , Deveau , H. et al. ( 2007 ). CRISPR provides acquired resistance against viruses in prokaryotes . Science 315 ( 5819 ): 1709 – 1712 . 10.1126/science.1138140 CASPubMedWeb of Science®Google Scholar Boch , J. , Scholze , H. , Schornack , S. et al. ( 2009 ). Breaking the code of DNA binding specificity of TAL-type III effectors . Science 326 ( 5959 ): 1509 – 1512 . 10.1126/science.1178811 CASPubMedWeb of Science®Google Scholar Broadgate , S. , Yu , J. , Downes , S.M. , and Halford , S. ( 2017 ). Unravelling the genetics of inherited retinal dystrophies: past, present and future . Progress in Retinal and Eye Research 59 : 53 – 96 . 10.1016/j.preteyeres.2017.03.003 CASPubMedWeb of Science®Google Scholar Carr , P.A. and Church , G.M. ( 2009 ). Genome engineering . Nature Biotechnology 27 ( 12 ): 1151 – 1162 . 10.1038/nbt.1590 CASPubMedWeb of Science®Google Scholar Carroll , M. and Zhou , X. ( 2017 ). Panacea in progress: CRISPR and the future of its biological research introduction . Microbiological Research 201 : 63 – 74 . 10.1016/j.micres.2017.04.012 CASPubMedGoogle Scholar Clapp , J. and Ruder , S.L. ( 2020 ). Precision technologies for agriculture: digital farming, gene-edited crops, and the politics of sustainability . Global Environmental Politics 20 ( 3 ): 49 – 69 . 10.1162/glep_a_00566 Web of Science®Google Scholar Cong , L. , Ran , F.A. , Cox , D. et al. ( 2013 ). Multiplex genome engineering using CRISPR/Cas systems . Science 339 ( 6121 ): 819 – 823 . 10.1126/science.1231143 CASPubMedWeb of Science®Google Scholar Dominguez , A.A. , Lim , W.A. , and Qi , L.S. ( 2016 ). Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation . Nature Reviews Molecular Cell Biology 17 ( 1 ): 5 – 15 . 10.1038/nrm.2015.2 CASPubMedWeb of Science®Google Scholar Gallego-Bartolomé , J. , Gardiner , J. , Liu , W. et al. ( 2018 ). Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain . Proceedings of the National Academy of Sciences 115 ( 9 ): E2125 – E2134 . 10.1073/pnas.1716945115 PubMedWeb of Science®Google Scholar Hong , A. ( 2018 ). CRISPR in personalized medicine: industry perspectives in gene editing . In: Seminars in Perinatology , vol. 42 , 501 – 507 . WB Saunders . 10.1053/j.semperi.2018.09.008 Google Scholar Hussain , B. , Lucas , S.J. , and Budak , H. ( 2018 ). CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement . Briefings in Functional Genomics 17 ( 5 ): 319 – 328 . CASPubMedWeb of Science®Google Scholar Ishino , Y. , Shinagawa , H. , Makino , K. et al. ( 1987 ). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product . Journal of Bacteriology 169 ( 12 ): 5429 – 5433 . 10.1128/jb.169.12.5429-5433.1987 CASPubMedWeb of Science®Google Scholar Jansen , R. , Embden , J.D.V. , Gaastra , W. , and Schouls , L.M. ( 2002 ). Identification of genes that are associated with DNA repeats in prokaryotes . Molecular Microbiology 43 ( 6 ): 1565 – 1575 . 10.1046/j.1365-2958.2002.02839.x CASPubMedWeb of Science®Google Scholar Jinek , M. , Chylinski , K. , Fonfara , I. et al. ( 2012 ). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity . Science 337 ( 6096 ): 816 – 821 . 10.1126/science.1225829 CASPubMedWeb of Science®Google Scholar Khanday , I. , Skinner , D. , Yang , B. et al. ( 2019 ). A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds . Nature 565 ( 7737 ): 91 – 95 . 10.1038/s41586-018-0785-8 CASPubMedWeb of Science®Google Scholar Kim , Y.G. , Cha , J. , and Chandrasegaran , S. ( 1996 ). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain . Proceedings of the National Academy of Sciences 93 ( 3 ): 1156 – 1160 . 10.1073/pnas.93.3.1156 CASPubMedWeb of Science®Google Scholar Koonin , E.V. , Makarova , K.S. , and Zhang , F. ( 2017 ). Diversity, classification and evolution of CRISPR-Cas systems . Current Opinion in Microbiology 37 : 67 – 78 . 10.1016/j.mib.2017.05.008 CASPubMedWeb of Science®Google Scholar Larson , M.H. , Gilbert , L.A. , Wang , X. et al. ( 2013 ). CRISPR interference (CRISPRi) for sequence-specific control of gene expression . Nature Protocols 8 ( 11 ): 2180 – 2196 . 10.1038/nprot.2013.132 CASPubMedWeb of Science®Google Scholar Li , T. , Huang , S. , Jiang , W.Z. et al. ( 2011 ). TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain . Nucleic Acids Research 39 ( 1 ): 359 – 372 . 10.1093/nar/gkq704 CASPubMedWeb of Science®Google Scholar Li , J.F. , Norville , J.E. , Aach , J. et al. ( 2013 ). Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 . Nature Biotechnology 31 ( 8 ): 688 – 691 . 10.1038/nbt.2654 CASPubMedWeb of Science®Google Scholar Li , J. , Meng , X. , Zong , Y. et al. ( 2016 ). Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9 . Nature Plants 2 : 16139 . 10.1038/nplants.2016.139 CASPubMedWeb of Science®Google Scholar Lo , T.W. , Pickle , C.S. , Lin , S. et al. ( 2013 ). Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions . Genetics 195 ( 2 ): 331 – 348 . 10.1534/genetics.113.155382 CASPubMedWeb of Science®Google Scholar Mali , P. , Yang , L. , Esvelt , K.M. et al. ( 2013 ). RNA-guided human genome engineering via Cas9 . Science 339 ( 6121 ): 823 – 826 . 10.1126/science.1232033 CASPubMedWeb of Science®Google Scholar Mojica , F.J.M. , Ferrer , C. , Juez , G. , and Rodríguez-Valera , F. ( 1995 ). Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning . Molecular microbiology 17 ( 1 ): 85 – 93 . 10.1111/j.1365-2958.1995.mmi_17010085.x CASPubMedWeb of Science®Google Scholar Petolino , J.F. ( 2015 ). Genome editing in plants via designed zinc finger nucleases . In Vitro Cellular & Developmental Biology-Plant 51 : 1 – 8 . 10.1007/s11627-015-9663-3 CASPubMedWeb of Science®Google Scholar Ramirez , C.L. , Foley , J.E. , Wright , D.A. et al. ( 2008 ). Unexpected failure rates for modular assembly of engineered zinc fingers . Nature Methods 5 ( 5 ): 374 – 375 . 10.1038/nmeth0508-374 CASPubMedWeb of Science®Google Scholar Ronholm , J. , Nasheri , N. , Petronella , N. , and Pagotto , F. ( 2016 ). Navigating microbiological food safety in the era of whole-genome sequencing . Clinical Microbiology Reviews 29 ( 4 ): 837 – 857 . 10.1128/CMR.00056-16 CASPubMedWeb of Science®Google Scholar Schaeffer , S.M. and Nakata , P.A. ( 2015 ). CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field . Plant Science 240 : 130 – 142 . 10.1016/j.plantsci.2015.09.011 CASPubMedWeb of Science®Google Scholar Sheth , R.U. , Yim , S.S. , Wu , F.L. , and Wang , H.H. ( 2017 ). Multiplex recording of cellular events over time on CRISPR biological tape . Science 358 ( 6369 ): 1457 – 1461 . 10.1126/science.aao0958 CASPubMedWeb of Science®Google Scholar Shrestha , A. , Khan , A. , and Dey , N. ( 2018 ). Cis–trans engineering: advances and perspectives on customized transcriptional regulation in plants . Molecular Plant 11 ( 7 ): 886 – 898 . 10.1016/j.molp.2018.05.008 CASPubMedWeb of Science®Google Scholar Symington , L.S. and Gautier , J. ( 2011 ). Double-strand break end resection and repair pathway choice . Annual Review of Genetics 45 : 247 – 271 . 10.1146/annurev-genet-110410-132435 CASPubMedWeb of Science®Google Scholar Townsend , J.A. , Wright , D.A. , Winfrey , R.J. et al. ( 2009 ). High-frequency modification of plant genes using engineered zinc-finger nucleases . Nature 459 ( 7245 ): 442 – 445 . 10.1038/nature07845 CASPubMedWeb of Science®Google Scholar Wang , C. , Liu , Q. , Shen , Y. et al. ( 2019 ). Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes . Nature Biotechnology 37 ( 3 ): 283 – 286 . 10.1038/s41587-018-0003-0 CASPubMedWeb of Science®Google Scholar Yamamuro , C. , Zhu , J.K. , and Yang , Z. ( 2016 ). Epigenetic modifications and plant hormone action . Molecular Plant 9 ( 1 ): 57 – 70 . 10.1016/j.molp.2015.10.008 CASPubMedWeb of Science®Google Scholar Zhang , F. , Maeder , M.L. , Unger-Wallace , E. et al. ( 2010 ). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases . Proceedings of the National Academy of Sciences 107 ( 26 ): 12028 – 12033 . 10.1073/pnas.0914991107 CASPubMedWeb of Science®Google Scholar OMICs‐based Techniques for Global Food Security ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
害羞迎南发布了新的文献求助200
1秒前
TSCWL发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
NexusExplorer应助Vincent采纳,获得10
3秒前
3秒前
心灵美元菱完成签到 ,获得积分10
3秒前
生动雁荷完成签到,获得积分10
3秒前
青峰完成签到,获得积分10
4秒前
Phantom1234发布了新的文献求助10
4秒前
4秒前
5秒前
mealies完成签到,获得积分0
5秒前
加辣螺蛳粉完成签到,获得积分10
6秒前
李沐子发布了新的文献求助10
6秒前
7秒前
biekanwo完成签到,获得积分10
7秒前
星辰大海应助Wll采纳,获得10
7秒前
烟花应助spd采纳,获得10
8秒前
cc4ever发布了新的文献求助10
8秒前
cuntjx完成签到 ,获得积分10
9秒前
9秒前
小古发布了新的文献求助10
9秒前
xm发布了新的文献求助10
9秒前
callmecjh发布了新的文献求助10
10秒前
dt发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
qh完成签到 ,获得积分10
11秒前
科里斯皮尔举报Messi求助涉嫌违规
11秒前
11秒前
李沐子完成签到,获得积分10
13秒前
舒适的梦玉完成签到,获得积分10
14秒前
Vincent发布了新的文献求助10
14秒前
14秒前
qqqq发布了新的文献求助10
14秒前
玉桂兔完成签到,获得积分10
15秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2421768
求助须知:如何正确求助?哪些是违规求助? 2111410
关于积分的说明 5344630
捐赠科研通 1838909
什么是DOI,文献DOI怎么找? 915439
版权声明 561179
科研通“疑难数据库(出版商)”最低求助积分说明 489564