Multichannel Cross-Modal Fusion Network for Multimodal Sentiment Analysis Considering Language Information Enhancement

计算机科学 情绪分析 人工智能 信息融合 传感器融合 情态动词 融合 自然语言处理 语音识别 语言学 哲学 化学 高分子化学
作者
Ronglong Hu,Jizheng Yi,Aibin Chen,Lijiang Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (7): 9814-9824 被引量:6
标识
DOI:10.1109/tii.2024.3388670
摘要

With the popularity of short videos, analyzing human emotions is crucial for understanding individual attitudes and guiding social public opinions. Consequently, multimodal sentiment analysis (MSA) has garnered significant attention in the field of human–computer interaction. The main challenge of MSA is to explore a high-quality multimodal fusion framework, as multiple modalities contribute inconsistently to sentiment prediction. However, most of the existing methods assume equal importance among different modalities, resulting in inadequate expression of the main modality. In addition, auxiliary modalities often contain redundant information, which hinders the multimodal fusion process. Therefore, we propose the multichannel cross-modal fusion network (MCFNet) to promote the multimodal fusion procedure by constructing a multichannel various modality fusion framework comprising three channels: obtaining multimodal representation through the first channel; eliminating information redundancy from auxiliary modalities via the second channel; and enhancing significance attributed to the main modality adopting the third channel. Subsequently, we design a multichannel information fusion gate to integrate feature representations from these three channels for downstream sentiment classification tasks. Numerous experiments on three benchmark datasets, CMU-multimodal opinion sentiment intensity (MOSI), CMU-multimodal opinion sentiment and emotion intensity (MOSEI), and Twitter2019, show that the MCFNet has made a significant progress compared to recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qinandi124发布了新的文献求助10
1秒前
陈百川应助瀼瀼采纳,获得20
2秒前
哈哈Ye发布了新的文献求助10
3秒前
十三州府完成签到,获得积分10
3秒前
3秒前
刘一安完成签到 ,获得积分10
6秒前
8秒前
bluefiber发布了新的文献求助10
9秒前
十九发布了新的文献求助10
9秒前
10秒前
12秒前
酷炫觅双完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
科研通AI5应助刚刚好采纳,获得10
13秒前
13秒前
情怀应助难过的谷芹采纳,获得30
14秒前
14秒前
2000dw发布了新的文献求助10
16秒前
19秒前
20秒前
荀煜祺完成签到,获得积分10
23秒前
怕孤独的乌龟完成签到,获得积分10
24秒前
lilili应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得150
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
25秒前
默默白开水完成签到 ,获得积分10
26秒前
胖大海完成签到,获得积分10
26秒前
26秒前
Felix完成签到 ,获得积分10
27秒前
yxsxm发布了新的文献求助10
29秒前
29秒前
Vans完成签到,获得积分10
29秒前
30秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069566
求助须知:如何正确求助?哪些是违规求助? 4290887
关于积分的说明 13368927
捐赠科研通 4111055
什么是DOI,文献DOI怎么找? 2251251
邀请新用户注册赠送积分活动 1256459
关于科研通互助平台的介绍 1188939