已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multichannel Cross-Modal Fusion Network for Multimodal Sentiment Analysis Considering Language Information Enhancement

计算机科学 情绪分析 人工智能 信息融合 传感器融合 情态动词 融合 自然语言处理 语音识别 语言学 化学 哲学 高分子化学
作者
Ronglong Hu,Jizheng Yi,Aibin Chen,Lijiang Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (7): 9814-9824 被引量:2
标识
DOI:10.1109/tii.2024.3388670
摘要

With the popularity of short videos, analyzing human emotions is crucial for understanding individual attitudes and guiding social public opinions. Consequently, multimodal sentiment analysis (MSA) has garnered significant attention in the field of human–computer interaction. The main challenge of MSA is to explore a high-quality multimodal fusion framework, as multiple modalities contribute inconsistently to sentiment prediction. However, most of the existing methods assume equal importance among different modalities, resulting in inadequate expression of the main modality. In addition, auxiliary modalities often contain redundant information, which hinders the multimodal fusion process. Therefore, we propose the multichannel cross-modal fusion network (MCFNet) to promote the multimodal fusion procedure by constructing a multichannel various modality fusion framework comprising three channels: obtaining multimodal representation through the first channel; eliminating information redundancy from auxiliary modalities via the second channel; and enhancing significance attributed to the main modality adopting the third channel. Subsequently, we design a multichannel information fusion gate to integrate feature representations from these three channels for downstream sentiment classification tasks. Numerous experiments on three benchmark datasets, CMU-multimodal opinion sentiment intensity (MOSI), CMU-multimodal opinion sentiment and emotion intensity (MOSEI), and Twitter2019, show that the MCFNet has made a significant progress compared to recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禾斗石开发布了新的文献求助20
2秒前
平常心发布了新的文献求助10
5秒前
香蕉觅云应助xxx采纳,获得10
6秒前
7秒前
Micheal完成签到 ,获得积分10
8秒前
only完成签到 ,获得积分10
10秒前
wpz完成签到,获得积分10
12秒前
易吴鱼完成签到 ,获得积分10
13秒前
yu完成签到 ,获得积分10
13秒前
细心的如天完成签到 ,获得积分0
14秒前
orixero应助平常心采纳,获得10
14秒前
Sunziy完成签到,获得积分10
17秒前
科研通AI5应助xlxu采纳,获得10
18秒前
19秒前
21秒前
优雅的帅哥完成签到 ,获得积分10
21秒前
漂亮的天宇完成签到,获得积分20
21秒前
未夕晴完成签到,获得积分10
21秒前
CometF完成签到 ,获得积分10
22秒前
平常心完成签到,获得积分10
22秒前
24秒前
布同完成签到,获得积分10
25秒前
27秒前
义气的元柏完成签到 ,获得积分10
29秒前
搞搞科研发布了新的文献求助10
32秒前
32秒前
良良丸完成签到 ,获得积分0
33秒前
小龙完成签到,获得积分10
33秒前
111aaa发布了新的文献求助10
35秒前
迷路冰颜完成签到 ,获得积分10
35秒前
搞搞科研完成签到,获得积分10
39秒前
sunshine应助含蓄的金鱼采纳,获得10
39秒前
栀璃鸳挽发布了新的文献求助10
40秒前
丸子完成签到 ,获得积分10
41秒前
可千万不要躺平呀完成签到,获得积分10
45秒前
45秒前
吉良咸鱼应助wph采纳,获得10
48秒前
小马甲应助111aaa采纳,获得10
48秒前
50秒前
LMNg6n举报eee求助涉嫌违规
51秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811601
求助须知:如何正确求助?哪些是违规求助? 3355922
关于积分的说明 10378326
捐赠科研通 3072802
什么是DOI,文献DOI怎么找? 1687724
邀请新用户注册赠送积分活动 811767
科研通“疑难数据库(出版商)”最低求助积分说明 766817