电解质
材料科学
溶剂化
电场
水溶液
阴极
离子
锌
化学工程
电化学
化学物理
纳米技术
电极
化学
物理化学
有机化学
工程类
物理
量子力学
冶金
作者
Xiaojing Yao,Jinkai Zhang,Xin Zhao,Zetao Ren,Mingkun Tang,Ran Han,Guang Feng,Baohua Li,Dong Zhou,Feiyu Kang
标识
DOI:10.1002/adma.202511163
摘要
Abstract While nonaqueous cosolvents alleviate hydrogen evolution reaction and dendritic growth in aqueous zinc (Zn) metal batteries (ZMBs), persistent H 2 O activity at Zn|electrolyte interfaces originating from unregulated ion distribution leads to premature failure. Here, an electric field‐guided ion orchestration (EF‐IO) strategy is proposed, leveraging cation interfacial modifiers to reconfigure electric double layers (EDLs) and solvation configurations. Interfacial simulations combined with experimental investigations verify that the ion‐orchestrated‐EDL synergistically diversifies Zn 2+ /Na + solvation configurations and homogenizes localized electric fields, thereby forming an organic–inorganic gradient solid electrolyte interphase (SEI) that suppresses parasitic reactions. This enables dendrite‐free Zn plating with 3400 h cyclability in Zn||Zn symmetric cells, while Zn||V 10 O 24 ·12H 2 O full cells exhibit exceptional durability along with wide temperature adaptability (−45 to 55 °C). Crucially, this EF‐IO strategy unlocks ClO 4 − ‐based reversible anion storage in high‐voltage organic cathodes. By bridging interfacial dynamics and multi‐chemistry compatibility, this work establishes a promising paradigm for robust and versatile ZMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI