PromptFusion: Decoupling Stability and Plasticity for Continual Learning

遗忘 计算机科学 渐进式学习 人工智能 机器学习 解耦(概率) 理论(学习稳定性) 边距(机器学习) 班级(哲学) 控制工程 工程类 语言学 哲学
作者
Chen, Haoran,Wu, Zuxuan,Han, Xintong,Jia, Menglin,Jiang, Yu-Gang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2303.07223
摘要

Continual learning refers to the capability of continuously learning from a stream of data. Current research mainly focuses on relieving catastrophic forgetting, and most of their success is at the cost of limiting the performance of newly incoming tasks. Such a trade-off is referred to as the stabilityplasticity dilemma and is a more general and challenging problem for continual learning. However, the inherent conflict between these two concepts makes it seemingly impossible to devise a satisfactory solution to both of them simultaneously. Therefore, we ask, "is it possible to divide them into two problems to conquer independently?" To this end, we propose a prompt-tuning-based method termed PromptFusion to enable the decoupling of stability and plasticity. Specifically, PromptFusion consists of a carefully designed Stabilizer module that deals with catastrophic forgetting and a Booster module to learn new knowledge concurrently. During training, PromptFusion first passes an input image to the two modules separately. Then the resulting logits are further fused with a learnable weight parameter. Finally, a weight mask is applied to the derived logits to balance between old and new classes. Extensive experiments show that our method achieves promising results on popular continual learning datasets for both class-incremental and domain incremental settings. Especially on Split-Imagenet-R, one of the most challenging datasets for class-incremental learning, our method exceeds state-of-the-art prompt-based methods L2P and DualPrompt by more than 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Michael采纳,获得10
2秒前
活泼岩发布了新的文献求助15
2秒前
3秒前
哈哈哈发布了新的文献求助10
3秒前
明理夏波完成签到 ,获得积分10
3秒前
轻松黄豆完成签到,获得积分20
6秒前
6秒前
蔓蔓子完成签到 ,获得积分10
6秒前
FKZoz完成签到,获得积分10
7秒前
情怀应助wza采纳,获得10
7秒前
willow完成签到,获得积分10
7秒前
今后应助yaya采纳,获得10
8秒前
fighting完成签到 ,获得积分10
8秒前
10秒前
竹子完成签到,获得积分10
10秒前
李xs发布了新的文献求助10
11秒前
14秒前
14秒前
14秒前
CodeCraft应助zhangsir采纳,获得10
15秒前
Hello应助蜡笔小欣采纳,获得10
16秒前
英姑应助斯文的文轩采纳,获得10
16秒前
16秒前
爆米花应助LaLune采纳,获得10
18秒前
动听的秋白完成签到 ,获得积分10
18秒前
yyy发布了新的文献求助10
19秒前
善学以致用应助MrSong采纳,获得10
19秒前
忧郁绣连发布了新的文献求助10
19秒前
19秒前
20秒前
20240901发布了新的文献求助10
20秒前
20秒前
22秒前
科研通AI5应助MrSong采纳,获得10
24秒前
26秒前
邦邦完成签到,获得积分10
27秒前
manman发布了新的文献求助10
27秒前
27秒前
汉堡包应助20240901采纳,获得10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Representations of the Orient in Western Music: Violence and Sensuality 300
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4797992
求助须知:如何正确求助?哪些是违规求助? 4117599
关于积分的说明 12738277
捐赠科研通 3847985
什么是DOI,文献DOI怎么找? 2120325
邀请新用户注册赠送积分活动 1142380
关于科研通互助平台的介绍 1032040