Quantitative assessment and mitigation strategies of greenhouse gas emissions from rice fields in China: A data-driven approach based on machine learning and statistical modeling

温室气体 环境科学 肥料 水田 灌溉 排水 环境工程 耕作 稻草 农业工程 农学 工程类 生态学 生物
作者
Qingguan Wu,Jingzhi Wang,Yong He,Ying Liu,Qian Jiang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:210: 107929-107929 被引量:4
标识
DOI:10.1016/j.compag.2023.107929
摘要

The accurate prediction of greenhouse gas (GHG) emissions from paddy fields is critical for developing mitigation strategies to reduce emissions, while realizing the large-scale prediction of GHG emissions from paddy fields remains to be a challenge. Here, we established machine learning models to predict the GHG emissions from Chinese paddy systems using a dataset including 782 CH4 and 679 N2O emission observations based on 118 published studies across China. Our results identified XGBoost was the most suitable model with the outstanding efficiency and accuracy for predicting both CH4 (R2 = 0.754, RMSE = 0.485 kg ha−1) and N2O emissions (R2 = 0.762, RMSE = 0.423 kg ha−1) from rice fields in China. We found mineral and organic fertilizer rate, irrigation mode, straw returned proportion and tillage depth were key factors in regulating GHG emissions. Specifically, CH4 emissions trended to increase first and then decrease with increasing mineral nitrogen fertilizer rate, with the inflection point delayed under the application of organic fertilizer. On the other hand, N2O emissions continued to increase until the N fertilizer rate reached approximately 150 kg ha−1. The use of organic fertilizer, tillage, straw return in half and full quantity increased global warming potential (GWP) by 80.3 %, 33.8 %, 25.2 % and 111.6 %, respectively. Frequent drainage (FD) was identified as the most promising water management mode, with a higher potential for GHG emission mitigation of 39.5 % compared to continuous flooding, followed by mid-season drainage at 18.4 %. We found the combination of a mineral nitrogen fertilizer rate of 128 kg ha−1, FD water management, without straw, tillage, and organic fertilizer could achieve the most effective GHG emission mitigation, with a GWP of 3.13 Mg CO2 equivalent ha−1. Our findings provided a new insight for predicting GHG emissions from rice fields on a large scale, and offered guidance for mitigating GHG emissions from rice production in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于夜柳完成签到,获得积分10
1秒前
2秒前
emet发布了新的文献求助10
2秒前
bin完成签到 ,获得积分10
3秒前
3秒前
义气的巨人完成签到,获得积分10
4秒前
带象完成签到,获得积分10
5秒前
香蕉梨愁发布了新的文献求助10
5秒前
健忘机器猫完成签到,获得积分20
5秒前
6秒前
7秒前
7秒前
8秒前
Rodeo应助zzzzzzy采纳,获得10
8秒前
科研通AI2S应助于夜柳采纳,获得10
8秒前
共享精神应助13633501455采纳,获得10
8秒前
qunli发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
天天向上发布了新的文献求助10
9秒前
10秒前
清爽冰夏完成签到,获得积分10
10秒前
热心市民小红花应助Jenkin采纳,获得10
11秒前
无花果应助hyyyyy采纳,获得10
11秒前
BWL完成签到,获得积分10
12秒前
Mera完成签到,获得积分10
12秒前
聪慧的毛巾完成签到,获得积分20
13秒前
HSX完成签到,获得积分20
13秒前
elgar612发布了新的文献求助10
13秒前
Slmpure发布了新的文献求助20
13秒前
emet完成签到,获得积分10
13秒前
zz发布了新的文献求助10
13秒前
tomjim100发布了新的文献求助10
14秒前
14秒前
14秒前
pups完成签到,获得积分10
15秒前
Mera发布了新的文献求助30
15秒前
HSX发布了新的文献求助10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101925
求助须知:如何正确求助?哪些是违规求助? 3639479
关于积分的说明 11533307
捐赠科研通 3348117
什么是DOI,文献DOI怎么找? 1840054
邀请新用户注册赠送积分活动 907116
科研通“疑难数据库(出版商)”最低求助积分说明 824313