GuidedNet: A General CNN Fusion Framework via High-Resolution Guidance for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 卷积神经网络 人工智能 图像分辨率 图像融合 多光谱图像 图像(数学) 特征(语言学) 分辨率(逻辑) 计算机视觉 模式识别(心理学) 高分辨率 遥感 地理 哲学 语言学
作者
Ran Ran,Liang-Jian Deng,Tai-Xiang Jiang,Jin-Fan Hu,Jocelyn Chanussot,Gemine Vivone
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4148-4161 被引量:69
标识
DOI:10.1109/tcyb.2023.3238200
摘要

Hyperspectral image super-resolution (HISR) is about fusing a low-resolution hyperspectral image (LR-HSI) and a high-resolution multispectral image (HR-MSI) to generate a high-resolution hyperspectral image (HR-HSI). Recently, convolutional neural network (CNN)-based techniques have been extensively investigated for HISR yielding competitive outcomes. However, existing CNN-based methods often require a huge amount of network parameters leading to a heavy computational burden, thus, limiting the generalization ability. In this article, we fully consider the characteristic of the HISR, proposing a general CNN fusion framework with high-resolution guidance, called GuidedNet. This framework consists of two branches, including 1) the high-resolution guidance branch (HGB) that can decompose the high-resolution guidance image into several scales and 2) the feature reconstruction branch (FRB) that takes the low-resolution image and the multiscaled high-resolution guidance images from the HGB to reconstruct the high-resolution fused image. GuidedNet can effectively predict the high-resolution residual details that are added to the upsampled HSI to simultaneously improve spatial quality and preserve spectral information. The proposed framework is implemented using recursive and progressive strategies, which can promote high performance with a significant network parameter reduction, even ensuring network stability by supervising several intermediate outputs. Additionally, the proposed approach is also suitable for other resolution enhancement tasks, such as remote sensing pansharpening and single-image super-resolution (SISR). Extensive experiments on simulated and real datasets demonstrate that the proposed framework generates state-of-the-art outcomes for several applications (i.e., HISR, pansharpening, and SISR). Finally, an ablation study and more discussions assessing, for example, the network generalization, the low computational cost, and the fewer network parameters, are provided to the readers. The code link is: https://github.com/Evangelion09/GuidedNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
二巨头发布了新的文献求助10
1秒前
Sssssss完成签到 ,获得积分10
1秒前
1秒前
或无情完成签到 ,获得积分10
2秒前
LFJ完成签到,获得积分10
3秒前
执着的导师完成签到,获得积分10
4秒前
小蘑菇应助___采纳,获得10
5秒前
我要夏天发布了新的文献求助10
5秒前
赘婿应助黎洛洛采纳,获得10
7秒前
9秒前
11秒前
11秒前
hzx完成签到,获得积分10
12秒前
sciforce完成签到,获得积分10
12秒前
XHL完成签到,获得积分10
13秒前
14秒前
科研通AI5应助虚幻的玉米采纳,获得10
15秒前
15秒前
2426132085完成签到,获得积分10
17秒前
tjbdlyh完成签到 ,获得积分10
17秒前
987发布了新的文献求助10
19秒前
QAQ完成签到,获得积分10
20秒前
___发布了新的文献求助10
20秒前
qinqiny完成签到 ,获得积分10
21秒前
21秒前
QAQ发布了新的文献求助10
22秒前
jjj应助落后十八采纳,获得20
23秒前
飘逸千万发布了新的文献求助10
27秒前
28秒前
29秒前
矿渣完成签到,获得积分10
29秒前
欢呼的莆发布了新的文献求助10
32秒前
kingsman完成签到,获得积分10
32秒前
好旺发布了新的文献求助10
32秒前
发嗲的慕蕊完成签到 ,获得积分10
33秒前
36秒前
飘逸千万完成签到,获得积分10
36秒前
37秒前
Fang完成签到,获得积分10
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130