Machine Learning for Parametrical Analysis of Friction Stir Welded Aluminum Metal Matrix Composites

材料科学 极限抗拉强度 复合材料 焊接 搅拌摩擦焊 延伸率 压痕硬度 接头(建筑物) 母材 微观结构 结构工程 工程类
作者
Saravanan Kothandaraman,Abimannan Giridharan
出处
期刊:Analele Universităţii "Dunărea de Jos" din Galaţi [Universitatea Dunarea de Jos din Galati]
卷期号:33: 59-74 被引量:1
标识
DOI:10.35219/awet.2022.05
摘要

The research focuses on the behaviour and process parametric influence on friction stir welded Al metal matrix composites reinforced with varied percentages of SiC, B4C, and Mg. The experimentation involves fabrication of Al metal matrix composites followed by friction stir welding and, subsequently, evaluation of the joint properties in terms of mechanical strength, microstructural integrity, and quality. In comparison to other joints with varied base material compositions, the weld exhibits refined grains and uniform distribution of hybrid particles in the joint region, resulting in increased strength. Higher SiC composition adds to greater strength, better wear characteristics, and harness, whereas B4C percentage is linked to hardness. The maximum ultimate tensile stress for a particular sample was determined to be around 160MPa, while the maximum percentage elongation was found to be around 165 for 10% SiC and 3% B4C. As the amount of SiC declines and that of B4C rises, the percentage elongation decreases. In samples with a B4C weight percentage of 10%, the greatest hardness measured was around 103Hv. For a load of 30N, the wear rate was as high as 12gm/s with a SiC weight percentage of 10. For lower load values and a higher percentage of B4C, the wear rate often decreased. Chemical properties are barely changed. Therefore, the materials keep their original qualities after welding. During the non-destructive testing process, no large cracks, pores, or clusters of pores are found, indicating that the weld is of good quality. To achieve a satisfactory weld, optimal ranges based on analysis using machine learning of rotary tool speed, tool linear velocity, transverse speed are maintained. Linear Regression algorithm, Random Forest algorithm and Lasso Regression algorithms are being used and the results are also compared. This work covers a wide range of topics, and the results are found to have improved significantly in most cases and is in good agreement with data previously presented in the literatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
谢慧蕴发布了新的文献求助10
3秒前
3秒前
3秒前
枕上诗书发布了新的文献求助10
4秒前
打打应助xxxhhh采纳,获得10
4秒前
qinggui127关注了科研通微信公众号
4秒前
HHHHTTTT完成签到,获得积分10
4秒前
疯狂的醉蝶完成签到 ,获得积分10
5秒前
无情凡桃发布了新的文献求助10
6秒前
CipherSage应助cndxh采纳,获得10
6秒前
6秒前
6秒前
7秒前
EJSA发布了新的文献求助10
8秒前
韩希发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
yy123发布了新的文献求助10
10秒前
11秒前
Hq发布了新的文献求助10
12秒前
12秒前
cc发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
小悦完成签到 ,获得积分10
14秒前
唐泽雪穗应助沙特土财主采纳,获得10
14秒前
酷酷菲音完成签到,获得积分10
14秒前
14秒前
呆萌的丑关注了科研通微信公众号
14秒前
14秒前
oliverkunnnnn发布了新的文献求助10
14秒前
weizhao发布了新的文献求助10
14秒前
李杰发布了新的文献求助10
14秒前
gslscuer发布了新的文献求助10
15秒前
15秒前
16秒前
lx1a0发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140