Machine Learning for Parametrical Analysis of Friction Stir Welded Aluminum Metal Matrix Composites

材料科学 极限抗拉强度 复合材料 焊接 搅拌摩擦焊 延伸率 压痕硬度 接头(建筑物) 母材 微观结构 结构工程 工程类
作者
Saravanan Kothandaraman,Abimannan Giridharan
出处
期刊:Analele Universităţii "Dunărea de Jos" din Galaţi [Universitatea Dunarea de Jos din Galati]
卷期号:33: 59-74 被引量:1
标识
DOI:10.35219/awet.2022.05
摘要

The research focuses on the behaviour and process parametric influence on friction stir welded Al metal matrix composites reinforced with varied percentages of SiC, B4C, and Mg. The experimentation involves fabrication of Al metal matrix composites followed by friction stir welding and, subsequently, evaluation of the joint properties in terms of mechanical strength, microstructural integrity, and quality. In comparison to other joints with varied base material compositions, the weld exhibits refined grains and uniform distribution of hybrid particles in the joint region, resulting in increased strength. Higher SiC composition adds to greater strength, better wear characteristics, and harness, whereas B4C percentage is linked to hardness. The maximum ultimate tensile stress for a particular sample was determined to be around 160MPa, while the maximum percentage elongation was found to be around 165 for 10% SiC and 3% B4C. As the amount of SiC declines and that of B4C rises, the percentage elongation decreases. In samples with a B4C weight percentage of 10%, the greatest hardness measured was around 103Hv. For a load of 30N, the wear rate was as high as 12gm/s with a SiC weight percentage of 10. For lower load values and a higher percentage of B4C, the wear rate often decreased. Chemical properties are barely changed. Therefore, the materials keep their original qualities after welding. During the non-destructive testing process, no large cracks, pores, or clusters of pores are found, indicating that the weld is of good quality. To achieve a satisfactory weld, optimal ranges based on analysis using machine learning of rotary tool speed, tool linear velocity, transverse speed are maintained. Linear Regression algorithm, Random Forest algorithm and Lasso Regression algorithms are being used and the results are also compared. This work covers a wide range of topics, and the results are found to have improved significantly in most cases and is in good agreement with data previously presented in the literatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙牙完成签到,获得积分10
1秒前
2秒前
天侠客完成签到,获得积分10
3秒前
3秒前
4秒前
十文字发布了新的文献求助10
6秒前
杨冰发布了新的文献求助10
7秒前
7秒前
8秒前
WYN发布了新的文献求助10
9秒前
9秒前
夏下下完成签到 ,获得积分10
9秒前
qiao应助科研通管家采纳,获得50
10秒前
HEIKU应助科研通管家采纳,获得20
10秒前
10秒前
HEAR应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
科研通AI5应助十文字采纳,获得10
10秒前
12秒前
苹果诗筠发布了新的文献求助10
13秒前
南宫映榕发布了新的文献求助30
13秒前
JWonder发布了新的文献求助10
15秒前
strug783发布了新的文献求助10
16秒前
十文字完成签到,获得积分10
16秒前
17秒前
17秒前
玛卡巴卡的小推车完成签到,获得积分10
18秒前
19秒前
科研通AI5应助zzj-zjut采纳,获得10
19秒前
19秒前
JWonder完成签到,获得积分10
20秒前
小白发布了新的文献求助10
22秒前
23秒前
jakeyjakey发布了新的文献求助10
23秒前
彭于晏应助Lgenius采纳,获得10
24秒前
小二郎应助复杂静竹采纳,获得10
24秒前
25秒前
板凳完成签到 ,获得积分10
26秒前
wanci应助米尔的猫采纳,获得10
26秒前
Joker完成签到,获得积分10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780330
求助须知:如何正确求助?哪些是违规求助? 3325604
关于积分的说明 10223724
捐赠科研通 3040799
什么是DOI,文献DOI怎么找? 1669004
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648