Application of computational methods for class A GPCR Ligand discovery

G蛋白偶联受体 药物发现 计算生物学 鉴定(生物学) 配体(生物化学) 计算机科学 功能(生物学) 生物信息学 生物 受体 生物化学 细胞生物学 植物
作者
Gregory L. Szwabowski,Daniel L. Baker,Abby L. Parrill
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier BV]
卷期号:121: 108434-108434 被引量:5
标识
DOI:10.1016/j.jmgm.2023.108434
摘要

G protein-coupled receptors (GPCR) are integral membrane proteins of considerable interest as targets for drug development due to their role in transmitting cellular signals in a multitude of biological processes. Of the six classes categorizing GPCR (A, B, C, D, E, and F), class A contains the largest number of therapeutically relevant GPCR. Despite their importance as drug targets, many challenges exist for the discovery of novel class A GPCR ligands serving as drug precursors. Though knowledge of the structural and functional characteristics of GPCR has grown significantly over the past 20 years, a large portion of GPCR lack reported, experimentally determined structures. Furthermore, many GPCR have no known endogenous and/or synthetic ligands, limiting further exploration of their biochemical, cellular, and physiological roles. While many successes in GPCR ligand discovery have resulted from experimental high-throughput screening, computational methods have played an increasingly important role in GPCR ligand identification in the past decade. Here we discuss computational techniques applied to GPCR ligand discovery. This review summarizes class A GPCR structure/function and provides an overview of many obstacles currently faced in GPCR ligand discovery. Furthermore, we discuss applications and recent successes of computational techniques used to predict GPCR structure as well as present a summary of ligand- and structure-based methods used to identify potential GPCR ligands. Finally, we discuss computational hit list generation and refinement and provide comprehensive workflows for GPCR ligand identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娃哈哈哈完成签到,获得积分10
3秒前
3秒前
3秒前
非对称转录完成签到,获得积分10
3秒前
卡卡西应助Desamin采纳,获得10
5秒前
7秒前
7秒前
Ava应助zoey采纳,获得10
8秒前
打打应助复杂的浩阑采纳,获得10
9秒前
livra1058发布了新的文献求助10
9秒前
10秒前
10秒前
哈哈发布了新的文献求助10
15秒前
科研通AI5应助LLL采纳,获得10
16秒前
领导范儿应助二橦采纳,获得10
16秒前
李健应助薛建伟采纳,获得10
17秒前
毛毛完成签到,获得积分10
17秒前
卷大喵完成签到,获得积分10
17秒前
Tracy完成签到,获得积分10
19秒前
Oracle应助娟娟采纳,获得20
20秒前
背后的元槐完成签到,获得积分20
20秒前
21秒前
21秒前
22秒前
22秒前
小蘑菇应助6666采纳,获得10
22秒前
peiyy完成签到,获得积分10
24秒前
Hello应助小象采纳,获得10
24秒前
卡卡西应助大鱼采纳,获得10
24秒前
qs完成签到,获得积分10
24秒前
佛系研究僧完成签到,获得积分10
24秒前
25秒前
26秒前
TTTTTT发布了新的文献求助10
26秒前
zoey发布了新的文献求助10
27秒前
28秒前
Rae sremer发布了新的文献求助10
28秒前
29秒前
30秒前
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802119
求助须知:如何正确求助?哪些是违规求助? 3347873
关于积分的说明 10335457
捐赠科研通 3063893
什么是DOI,文献DOI怎么找? 1682232
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763973