电解质
阴极
材料科学
侧链
质子化
离子电导率
聚合物
化学工程
锂(药物)
金属
离子键合
离子
电极
化学
有机化学
复合材料
物理化学
医学
内分泌学
工程类
冶金
作者
Longjie He,Yang Shao,Shibin Li,Yihang Nie,Ying‐Hao Chu,Feng Guo,Xuancheng Liu,Qingying Li,Dan Luo,Xin Wang,Zhongwei Chen
标识
DOI:10.1002/anie.202507222
摘要
Abstract: The development of high‐voltage solid‐state lithium‐metal batteries (HVSSLMBs) is severely limited by unstable ion transport, insufficient oxidative stability, and poor electrode–electrolyte interface (EEI) compatibility of conventional solid electrolytes. Herein, we report a topologically entangled polymer electrolyte featuring ionophilic–protonation dual side chains. The ionophilic functional groups on these side chains provide abundant coordination sites, significantly enhancing Li+ transport, while exposed carboxyl (–COOH) groups induce protonation on the cathode surface, effectively suppressing transition metal (TM) ion migration. The topologically entangled polymer network ensures uniform electric‐field distribution, mitigates lattice‐oxygen release, and maintains continuous Li+ conduction. As a result, this electrolyte achieves a high room‐temperature ionic conductivity of 0.81 mS cm−1 and an oxidation stability up to 4.9 V. Moreover, the in situ formed inorganic species (LiF, Li2O, and Li2CO3), stabilized the EEI, enabling stable cycling of the symmetric cell for 2000 hours. Batteries assembled with a high‐voltage Li1.2Ni0.13Mn0.54Co0.13O2 (LRMO) cathode retain a specific capacity of 217.37 mAh g−1 after 250 cycles, and Ah‐level pouch cell utilizing an LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode exhibits stable cycling performance over 150 cycles. These findings demonstrate the great promise of this strategy for the development of high‐energy‐density lithium‐metal batteries with outstanding cycling performance and long‐term stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI