A lightweight, efficient, adaptive design of YOLOv5 for enhanced SAR ship detection

计算机科学 海洋工程 遥感 地质学 工程类
作者
H. J. Mo,Jiwen Wu,Hui Xia,Yu Xiao,Aiwu Zhao
出处
期刊:Remote Sensing Letters [Taylor & Francis]
卷期号:16 (5): 549-559
标识
DOI:10.1080/2150704x.2025.2480761
摘要

This study presents LEAD-YOLO, a YOLOv5 variant optimized for ship detection in synthetic aperture radar (SAR) imagery and tailored for edge computing devices. SAR imagery is crucial for maritime surveillance owing to its all-weather capability and low dependence on adverse weather conditions. However, ship detection using SAR imaging faces dual challenges: accuracy and real-time processing. Numerous factors impede accurate ship detection in SAR imagery, such as ocean wave noise, ship size and orientation variations, and near-shore landmass radar reflections. Furthermore, the need for rapid decision-making in maritime emergencies necessitates efficient, real-time vessel detection. LEAD-YOLO addresses these challenges by integrating FasterNet to reduce model complexity, utilizing the Receptive-Field Attention Convolutional Operation (RFCBAMConv) for improved feature representation, and incorporating Coordinate Attention into the C3 block (C3_CA) to enhance spatial feature encoding. This method strikes a balance between computational efficiency and model complexity. Experimental data from the SSDD, HRSID, and SAR-ship datasets indicate that LEAD-YOLO reduces parameter count by 55.35% and increases detection frame rate by 57.6% compared to YOLOv5s. We compared our method with other leading vessel detection methods in SAR imagery. The results demonstrate that despite reduced complexity, our method outperforms most in average precision (AP), highlighting its effectiveness and practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助Pooh采纳,获得10
1秒前
天天快乐应助wlj采纳,获得10
1秒前
2秒前
2秒前
xianshuo完成签到,获得积分20
2秒前
dian发布了新的文献求助10
4秒前
浮笙完成签到,获得积分10
5秒前
5秒前
那奇泡芙发布了新的文献求助10
6秒前
6秒前
phy完成签到,获得积分10
7秒前
小虾米完成签到,获得积分10
7秒前
8秒前
vv发布了新的文献求助10
8秒前
糊涂发布了新的文献求助10
9秒前
Sophie发布了新的文献求助10
10秒前
HJJHJH发布了新的文献求助10
11秒前
赘婿应助yyxhahaha采纳,获得10
12秒前
yang发布了新的文献求助10
13秒前
14秒前
GAO完成签到,获得积分10
14秒前
我是老大应助zyt采纳,获得10
15秒前
D调的华丽完成签到,获得积分10
17秒前
18秒前
科研通AI5应助糊涂采纳,获得10
19秒前
wcywd完成签到,获得积分10
19秒前
SciGPT应助beifa采纳,获得10
21秒前
研友_VZG7GZ应助wcywd采纳,获得10
22秒前
隐形曼青应助zhangfan采纳,获得10
23秒前
ding应助dian采纳,获得10
24秒前
24秒前
25秒前
糊涂完成签到,获得积分10
26秒前
26秒前
飲啖茶食個包给O_o的求助进行了留言
26秒前
bububusbu完成签到,获得积分10
26秒前
香蕉觅云应助那奇泡芙采纳,获得10
27秒前
27秒前
Miss蔡发布了新的文献求助10
27秒前
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247838
求助须知:如何正确求助?哪些是违规求助? 3780792
关于积分的说明 11870657
捐赠科研通 3433898
什么是DOI,文献DOI怎么找? 1884694
邀请新用户注册赠送积分活动 936290
科研通“疑难数据库(出版商)”最低求助积分说明 842172