Dual Information Purification for Lightweight SAR Object Detection

对偶(语法数字) 计算机科学 对象(语法) 计算机视觉 人工智能 艺术 文学类
作者
Xi Yang,J. F. Sun,Songsong Duan,De Cheng
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (9): 9274-9282 被引量:1
标识
DOI:10.1609/aaai.v39i9.33004
摘要

Synthetic aperture radar (SAR) object detection requires accurate identification and localization of targets at various scales within SAR images. However, background clutter and speckle noise can obscure key features and mislead the knowledge distillation process. To address these challenges, we introduce the Dual Information Purification Knowledge Distillation (DIPKD) method, which improves the performance of the student model through three key strategies: denoising, enrichment, and decoupling. First, our Selective Noise Suppression (SNS) technique reduces speckle noise in global features by minimizing misleading information from the teacher model. Second, the Knowledge Level Decoupling (KLD) module separates features into target and non-target knowledge, balancing feature mapping and reducing background noise to enhance the extraction of critical information for the student model. Finally, the Reverse Information Transfer (RIT) module refines intermediate features in the student model, compensating for the loss of detailed local information. Experimental results demonstrate that DIPKD significantly outperforms existing distillation techniques in SAR object detection, achieving 60.2% and 51.4% mAP scores on the SSDD and HRSID datasets, respectively. Additionally, the student model shows performance improvements of 1.3% and 2.9% over the teacher model, highlighting the effectiveness of the information purification approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TOM完成签到,获得积分10
1秒前
Ava应助vvvvv采纳,获得10
1秒前
你好耀眼发布了新的文献求助10
3秒前
zfcc完成签到,获得积分10
4秒前
SCIdd发布了新的文献求助10
4秒前
不爱睡觉完成签到 ,获得积分10
6秒前
7秒前
li完成签到 ,获得积分10
9秒前
彭于晏应助carrieschen采纳,获得30
10秒前
SCIdd完成签到,获得积分10
12秒前
12秒前
Hello应助宫熠彤采纳,获得10
13秒前
14秒前
16秒前
16秒前
胡庆余发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
19秒前
孙勇发布了新的文献求助10
21秒前
pearson应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
zhang08完成签到,获得积分10
22秒前
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
22秒前
fifteen应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
馆长举报zhou求助涉嫌违规
22秒前
啦啦啦啦完成签到 ,获得积分10
23秒前
23秒前
24秒前
Lis完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4727442
求助须知:如何正确求助?哪些是违规求助? 4084047
关于积分的说明 12631452
捐赠科研通 3790710
什么是DOI,文献DOI怎么找? 2093421
邀请新用户注册赠送积分活动 1119233
科研通“疑难数据库(出版商)”最低求助积分说明 995469