清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accuracy of deep learning models in the detection of accessory ostium in coronal cone beam computed tomographic images

冠状面 计算机断层摄影 断层重建 Cone(正式语言) 锥束ct 计算机断层摄影术 锥束ct 计算机科学 人工智能 医学 放射科 迭代重建 算法 内科学
作者
Shishir Shetty,Wael Talaat,Natheer Al‐Rawi,Sausan Al Kawas,Mais Sadek,Malak Elayyan,Kamis Gaballah,Sangeetha Narasimhan,İlker Özşahin,Dilber Uzun Ozsahin,Leena R. David
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-93250-8
摘要

Accessory ostium [AO] is one of the important anatomical variations in the maxillary sinus. AO is often associated with sinus pathology. Radiographic imaging plays a very important role in the detection of AO. Deep learning models have been used in maxillofacial imaging for interpretation and segmentation. However, there have been no research papers investigating the effectiveness of CNN in detecting AO in radiographs. To fill this gap of knowledge, we conducted a study to determine the accuracy of deep learning models in detecting AO in coronal CBCT images. Two examiners collected 454 coronal section images (227 with AO and 227 without AO) from 856 large field of view [FOV] cone beam tomography [CBCT] scans in the dental radiology archives of a teaching hospital. The collected images were then pre-processed and augmented to obtain 1260 images. Three pre-trained models, the Visual Geometry Group of the University of Oxford-16 layers [VGG16], MobileNetV2, and ResNet101V2, were used as base models. The performance of all the models was analyzed, and ResNet101v2 was selected for classification of images. Fine-tuning approach was employed with L1 (Lasso regression) regularization to avoid overfitting. The test accuracy and loss of the ResNet-101V2 classification model was 0.81 and 0.51, respectively. The precision, recall, F1-score, and AUC of the classification model were 0.82, 0.81, 0.81, and 0.87 respectively. ResNet-101V2 showed good accuracy in the detection of AO from coronal CBCT images. The present study used cropped two-dimensional images of CBCT scans. Future work can be carried out to determine the accuracy of deep learning models in the detection of AO in three-dimensional CBCT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
17秒前
量子星尘发布了新的文献求助10
28秒前
小强完成签到 ,获得积分10
34秒前
桦奕兮完成签到 ,获得积分10
51秒前
51秒前
量子星尘发布了新的文献求助10
53秒前
冰凌心恋完成签到,获得积分10
55秒前
洛宁发布了新的文献求助10
55秒前
a11835完成签到,获得积分10
1分钟前
a11835发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
mzhang2完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
西柚柠檬完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
景妙海完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
矢思然发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
ZZzz完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
ding应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885861
求助须知:如何正确求助?哪些是违规求助? 3427900
关于积分的说明 10757139
捐赠科研通 3152724
什么是DOI,文献DOI怎么找? 1740612
邀请新用户注册赠送积分活动 840305
科研通“疑难数据库(出版商)”最低求助积分说明 785313