Discovery and Characterization of Novel Receptor-Interacting Protein Kinase 1 Inhibitors Using Deep Learning and Virtual Screening

虚拟筛选 计算生物学 药物发现 激酶 生物 神经科学 药理学 细胞生物学 生物信息学
作者
Bo Liu,Likun Zhao,Ying Tan,Xiaojun Yao,Huanxiang Liu,Qianqian Zhang
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
标识
DOI:10.1021/acschemneuro.5c00180
摘要

Receptor-interacting protein kinase 1 (RIPK1) serves as a critical mediator of cell necroptosis and represents a promising therapeutic target for various human neurodegenerative diseases and inflammatory diseases. Nonetheless, the RIPK1 inhibitors currently reported are inadequate for clinical research due to suboptimal inhibitory activities or lack of selectivity. Consequently, there is a need for the discovery of novel RIPK1 kinase inhibitors. In this study, we integrated a deep learning model, specifically the fingerprint graph attention network (FP-GAT), with molecular docking-based virtual screening to identify potential RIPK1 inhibitors from a library comprising 13 million compounds. Out of 43 compounds procured, two compounds (designated as 24 and 41) demonstrated enzyme inhibition activity exceeding 50% at a concentration of 10 μM against RIPK1. The half-maximal inhibitory concentrations (IC50) for compounds 24 and 41 were determined to be 2.01 and 2.95 μM, respectively. Furthermore, these compounds exhibited protective effects in an HT-29 cell model of TSZ-induced necroptosis, with half-maximal effective concentrations (EC50) of 6.77 μM for compound 24 and 68.70 μM for compound 41. Finally, molecular dynamics simulations and binding free energy calculations were conducted to elucidate the molecular mechanism of compounds 24 and 41 binding to RIPK1. The results show that Met92, Met95, Ala155, and Asp156 are key residues for novel RIPK1 inhibitors. In summary, this work discovered two hit compounds targeting RIPK1, which can be further structurally modified to become promising lead compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃脆脆鲨完成签到 ,获得积分10
2秒前
西瓜应助阿良采纳,获得30
3秒前
哈哈学习学习噢完成签到,获得积分10
5秒前
5秒前
平城落叶完成签到,获得积分10
6秒前
6秒前
干净的寒天完成签到,获得积分10
7秒前
9秒前
静静小可爱完成签到,获得积分10
9秒前
10秒前
简单点完成签到 ,获得积分10
10秒前
刻苦听寒发布了新的文献求助10
12秒前
niao发布了新的文献求助10
13秒前
简单点关注了科研通微信公众号
13秒前
糊涂的皮卡丘完成签到 ,获得积分10
17秒前
hehe完成签到,获得积分10
17秒前
自然的南露完成签到 ,获得积分10
18秒前
仁爱的寻凝完成签到,获得积分20
19秒前
西瓜应助ohenry采纳,获得10
21秒前
深情安青应助花誓lydia采纳,获得10
23秒前
烟花应助仁爱的寻凝采纳,获得10
23秒前
释棱完成签到 ,获得积分10
24秒前
小马发布了新的文献求助10
24秒前
科研通AI5应助山淮采纳,获得10
24秒前
万能图书馆应助乱武采纳,获得10
25秒前
望北完成签到 ,获得积分10
25秒前
25秒前
kaka完成签到 ,获得积分10
27秒前
28秒前
28秒前
大胆砖头发布了新的文献求助10
30秒前
33秒前
隐形曼青应助祁南松采纳,获得10
33秒前
wuhanfei发布了新的文献求助10
33秒前
34秒前
大意的觅云完成签到,获得积分10
36秒前
liu完成签到,获得积分10
36秒前
37秒前
花誓lydia发布了新的文献求助10
37秒前
无情的宛菡完成签到 ,获得积分10
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789448
求助须知:如何正确求助?哪些是违规求助? 3334410
关于积分的说明 10270135
捐赠科研通 3050885
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732