MKFGO: Integrating Multi-Source Knowledge Fusion with Pre-Trained Language Model for High-Accuracy Protein Function Prediction

计算机科学 融合 功能(生物学) 人工智能 自然语言处理 机器学习 语言学 生物 哲学 进化生物学
作者
Yiheng Zhu,Shenglong Zhu,Xuan Yu,Yan He,Yan Liu,Xiaojun Xie,Dong‐Jun Yu,Rui Ye
标识
DOI:10.1101/2025.03.27.645685
摘要

Accurately identifying protein functions is essential to understand life mechanisms and thus advance drug discovery. Although biochemical experiments are the gold standard for determining protein functions, they are often time-consuming and labor-intensive. Here, we proposed a novel composite deep-learning method, MKFGO, to infer Gene Ontology (GO) attributes through integrating five complementary pipelines built on multi-source biological data. MKFGO was rigorously benchmarked on 1522 non-redundant proteins, demonstrating superior performance over 11 state-of-the-art function prediction methods. Comprehensive data analyses revealed that the major advantage of MKFGO lies in its two deep-learning components, HFRGO and PLMGO, which derive handcraft features and protein large language model (PLM)-based features, respectively, from protein sequences in different biological views, with effective knowledge fusion at the decision-level. HFRGO leverages an LSTM-attention network embedded with handcraft features, in which the triplet loss-based guilt-by-association strategy is designed to enhance the correlation between feature similarity and function similarity. PLMGO employs the PLM to capture feature embeddings with discriminative functional patterns from sequences. Meanwhile, another three components provide complementary insights for further improving prediction accuracy, driven by protein-protein interaction, GO term probability, and protein-coding gene sequence, respectively. The source codes and models of MKFGO are freely available at https://github.com/yiheng-zhu/MKFGO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助犹豫的世倌采纳,获得10
刚刚
刚刚
科研通AI5应助静静静采纳,获得10
1秒前
ding应助小新采纳,获得10
1秒前
2秒前
麟钰完成签到,获得积分10
2秒前
ccax发布了新的文献求助10
3秒前
djbj2022发布了新的文献求助10
5秒前
哈哈完成签到,获得积分10
5秒前
7秒前
8秒前
9秒前
领导范儿应助小全采纳,获得30
9秒前
9秒前
佳足完成签到,获得积分10
9秒前
10秒前
12秒前
飞云发布了新的文献求助10
13秒前
天天快乐应助美丽的夏柳采纳,获得10
14秒前
张继妖发布了新的文献求助10
15秒前
坦率的怜容完成签到,获得积分10
15秒前
Cc完成签到 ,获得积分10
17秒前
17秒前
19秒前
冷艳哈密瓜完成签到 ,获得积分10
21秒前
Archy发布了新的文献求助10
21秒前
23秒前
吃饱喝足就睡觉完成签到 ,获得积分10
23秒前
karna发布了新的文献求助10
25秒前
Milktea123发布了新的文献求助10
28秒前
lulu完成签到,获得积分10
28秒前
29秒前
李健的小迷弟应助九儿采纳,获得10
29秒前
ding应助好好好采纳,获得10
31秒前
小木虫启航完成签到,获得积分10
34秒前
xiying完成签到 ,获得积分10
35秒前
小全发布了新的文献求助30
35秒前
太叔半雪完成签到,获得积分10
36秒前
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648