Predicting landslide surge waves from large-scale physical experimental using machine learning

物理 浪涌 比例(比率) 山崩 气象学 地震学 量子力学 地质学
作者
Changhao Lyu,Weiya Xu,Qingfu Huang,Lei Tian,Hongjuan Shi,Hao Chen,Yuanze Liu,Jie Lei
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3)
标识
DOI:10.1063/5.0259314
摘要

The impoundment of a hydropower station can cause water levels in reservoir areas to rise, potentially triggering nearby landslides and generating surge waves that pose significant threats to navigation and hydropower infrastructure. Traditional methods for predicting landslide-induced surge waves often struggle to accurately capture peak wave heights and their evolving trends. To address this challenge, this study employs machine learning approaches to enhance the prediction of surge wave characteristics by integrating insight from physical model experimental data. Initially, we utilized multi-peak Gaussian functions to fit the experimental surge wave data, enabling us to characterize surge wave run-up through derived fitting equations. Building on these findings, we developed three machine learning models—Random Forest, Long Short-Term Memory, and Gated Recurrent Unit (GRU)—to predict surge wave behavior. Among these, the GRU model outperformed others, demonstrating exceptional accuracy in capturing the critical first and second wave peaks, which are crucial for disaster mitigation. This study underscores the GRU model's robustness in predicting surge wave dynamics, presenting it as a valuable tool for mitigating risks associated with landslide-induced surge waves. By combining physical modeling, experimental data, and advanced machine learning techniques, this research establishes an innovative framework for enhancing reservoir management and disaster prevention efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淋雨不好完成签到,获得积分10
刚刚
可琴完成签到,获得积分10
1秒前
麦冬冬发布了新的文献求助10
1秒前
星星完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
jj完成签到,获得积分10
4秒前
4秒前
Maroon5完成签到,获得积分10
5秒前
大气巧曼完成签到,获得积分10
5秒前
专注的小虾米完成签到 ,获得积分10
6秒前
吴丽雪完成签到,获得积分10
6秒前
研友_ZeqAxZ完成签到,获得积分0
6秒前
7秒前
山石二道疤完成签到,获得积分20
7秒前
okguy0210发布了新的文献求助10
7秒前
7秒前
俊俊完成签到,获得积分10
8秒前
麦冬冬完成签到,获得积分10
9秒前
10秒前
明理的小甜瓜完成签到,获得积分10
10秒前
changping应助小白菜采纳,获得10
10秒前
善学以致用应助小白菜采纳,获得10
10秒前
11秒前
无心发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
NexusExplorer应助wg采纳,获得10
12秒前
13秒前
威武的念波完成签到,获得积分10
13秒前
11发布了新的文献求助10
13秒前
13秒前
三生一陌发布了新的文献求助30
13秒前
hsbuuwqbdubeq发布了新的文献求助10
14秒前
14秒前
长安完成签到,获得积分10
14秒前
扶光完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193933
求助须知:如何正确求助?哪些是违规求助? 4376236
关于积分的说明 13628897
捐赠科研通 4231184
什么是DOI,文献DOI怎么找? 2320812
邀请新用户注册赠送积分活动 1319105
关于科研通互助平台的介绍 1269416