Enhanced electrochemical conversion of CO2 into formic acid using PbSO4/AtSn electrode: Catalyst synthesis and process optimization

法拉第效率 催化作用 电化学 材料科学 甲酸 化学工程 电解质 电催化剂 二氧化碳电化学还原 电极 箔法 无机化学 化学 复合材料 色谱法 有机化学 物理化学 一氧化碳 工程类
作者
Muhammad Arsalan,Dina Ewis,Nafis Mahmud,Muneer M. Ba‐Abbad,Mazen Khaled,Muftah H. El‐Naas
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (6): 111352-111352 被引量:2
标识
DOI:10.1016/j.jece.2023.111352
摘要

Electrochemical carbon dioxide (CO2) reduction is among the most promising and effective methods for producing valuable fuels while simultaneously addressing global warming. Numerous metal-based materials showed promising potential for CO2 conversion due to their distinct physical, mechanical, and electrical capabilities. However, there is often a continuous challenge to fabricating stable electrode systems with high Faradaic efficiency %. In this study, an electrochemical catalyst consisting of lead sulphate was synthesized, deposited on acid treated tin foil (PbSO4/AtSn) and tested for the CO2 ECR. The prepared Pb-based catalyst demonstrated a high faradaic efficiency of 79.8% at − 26 mA in a 0.11 M CO2-saturated NaHCO3 aqueous solution, which was significantly higher than both the acid treated and untreated blank Sn foil. The catalyst also exhibited lower energy consumption (0.0695 kWh.mol−1) compared to the most commonly used formic acid-producing electrocatalyst. At a constant current of − 26 mA, the catalyst continued to function after 20 h of continuous CO2 electrochemical reduction. Experimental design was used to optimize the fabricated catalyst performance at different operating conditions. Optimum performance was obtained at − 26 mA current, 0.11 M electrolyte concentration, and 1.42 mg of catalyst to obtain the highest faradic efficiency. According to the experimental findings, the Pb-based catalyst's superior catalytic performance could be attributed to its larger electrochemical active surface area and reduced charge-transfer resistance. These promising results suggest that the prepared Pb-based catalyst can be highly effective for electrochemical reduction of CO2 with promising potential for commercialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助曾经的听枫采纳,获得30
刚刚
可爱的函函应助小盘子采纳,获得30
刚刚
六个木子完成签到,获得积分10
1秒前
Owen应助Sun采纳,获得10
1秒前
2秒前
Rainbow完成签到 ,获得积分10
2秒前
无语的茗茗完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
yl完成签到,获得积分10
5秒前
6秒前
戴遇好完成签到 ,获得积分10
6秒前
酷酷冥发布了新的文献求助10
7秒前
科目三应助Zhouxin采纳,获得10
8秒前
8秒前
shionn完成签到,获得积分10
10秒前
liuke完成签到,获得积分10
10秒前
fafafa发布了新的文献求助10
10秒前
蓝不住完成签到,获得积分10
11秒前
12秒前
赘婿应助称心的蛟凤采纳,获得10
12秒前
大明完成签到,获得积分10
12秒前
zz321完成签到,获得积分10
12秒前
顾笑阳完成签到 ,获得积分10
12秒前
正在加载完成签到,获得积分20
13秒前
14秒前
nandou完成签到,获得积分10
15秒前
15秒前
16秒前
共享精神应助酷酷冥采纳,获得10
16秒前
16秒前
刻苦书白完成签到 ,获得积分10
16秒前
18秒前
咎冬亦完成签到 ,获得积分10
18秒前
18秒前
18秒前
20秒前
颜靖仇发布了新的文献求助10
21秒前
祖问筠完成签到,获得积分10
21秒前
高分求助中
Un calendrier babylonien des travaux, des signes et des mois: Séries iqqur îpuš 1036
Quantum Science and Technology Volume 5 Number 4, October 2020 1000
IG Farbenindustrie AG and Imperial Chemical Industries Limited strategies for growth and survival 1925-1953 800
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 600
Prochinois Et Maoïsmes En France (et Dans Les Espaces Francophones) 500
Offline version of the Proceedings of 15th EWTEC 2023, Bilbao 400
Beyond Transnationalism: Mapping the Spatial Contours of Political Activism in Europe’s Long 1970s 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2525673
求助须知:如何正确求助?哪些是违规求助? 2166738
关于积分的说明 5558954
捐赠科研通 1887002
什么是DOI,文献DOI怎么找? 939654
版权声明 564588
科研通“疑难数据库(出版商)”最低求助积分说明 501133