Map-matching on Wireless Traffic Sensor Data with a Sequence-to-Sequence Model

计算机科学 地图匹配 序列(生物学) 隐马尔可夫模型 蓝牙 背景(考古学) 无线传感器网络 人工智能 数据挖掘 实时计算 无线 全球定位系统 机器学习 计算机网络 生物 古生物学 电信 遗传学
作者
Zichun Zhu,Dan He,Wen Hua,Jiwon Kim,Hua Shi
标识
DOI:10.1109/mdm58254.2023.00048
摘要

Map-matching plays an essential role in many location-based applications. It seeks to translate a sequence of timestamped location measurements, which may originate from GPS, Bluetooth, or cellular sources, into the actual routes that moving objects follow on the underlying digital road network. Some existing work focus on map-matching methods based on Hidden Markov Models. While powerful, these methods are computationally demanding and require highly accurate location information. In contrast, neural network-based methods offer the ability to handle more complex data sources, but face challenges when applied to large-scale road networks. In this research, we delve into the task of map-matching using wireless traffic sensor data, specifically Bluetooth, in the context of expansive road networks. We introduce a Turn-Based Map-Matching (TBMM) model, built upon a Sequence-to-Sequence framework. This model accepts a sequence of Bluetooth readings as input and generates a sequence of successive turns with a predicted start road segment. As the sequence of turns is generated, the corresponding route is concurrently reconstructed, adhering to the topological structure of the underlying road network. Furthermore, we employ a two-step training approach to optimize our model. We begin by pre-training the model by minimizing cross-entropy loss. Subsequently, we deploy reinforcement learning to fine-tune the model, thereby further enhancing its performance. Our experimental study shows the promising performance of our TBMM model compared with two state-of-the-art solutions, achieving approximately 98% in precision, recall, and F1-score, demonstrating the potential of our approach in the domain of map-matching.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HonamC完成签到,获得积分10
刚刚
1秒前
结实大白完成签到,获得积分10
2秒前
GYPP完成签到,获得积分10
2秒前
2秒前
憧憬发布了新的文献求助10
3秒前
3秒前
5秒前
heheha完成签到,获得积分10
5秒前
中国大陆完成签到,获得积分10
6秒前
7秒前
7秒前
77发布了新的文献求助10
8秒前
毕业发布了新的文献求助20
9秒前
很酷的妞子完成签到 ,获得积分10
10秒前
英勇马里奥完成签到 ,获得积分10
11秒前
Echo发布了新的文献求助10
12秒前
雪白发卡完成签到,获得积分10
13秒前
13秒前
CipherSage应助杨涵采纳,获得10
13秒前
隐形曼青应助依依采纳,获得10
13秒前
14秒前
14秒前
李健的小迷弟应助明明采纳,获得10
15秒前
15秒前
17秒前
憧憬完成签到 ,获得积分20
17秒前
slhk发布了新的文献求助10
17秒前
Jasper应助doreen采纳,获得10
17秒前
麦兜完成签到 ,获得积分10
18秒前
19秒前
19秒前
科研助手6应助77采纳,获得10
19秒前
20秒前
bkagyin应助上下求索采纳,获得10
20秒前
21秒前
李伟完成签到,获得积分10
22秒前
王大可发布了新的文献求助10
23秒前
23秒前
24秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897344
求助须知:如何正确求助?哪些是违规求助? 3441305
关于积分的说明 10820976
捐赠科研通 3166251
什么是DOI,文献DOI怎么找? 1749223
邀请新用户注册赠送积分活动 845209
科研通“疑难数据库(出版商)”最低求助积分说明 788508