Multispectral Image Pan-Sharpening Guided by Component Substitution Model

多光谱图像 锐化 全色胶片 计算机科学 人工智能 可解释性 多光谱模式识别 图像分辨率 计算机视觉 模式识别(心理学)
作者
Huiling Gao,Shutao Li,Liangpei Zhang,Renwei Dian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13
标识
DOI:10.1109/tgrs.2023.3309863
摘要

Multispectral image pan-sharpening aims to increase the spatial details of multispectral images by fusing multispectral and panchromatic images. Existing component substitution-based deep learning pan-sharpening is generally regarded as a black box and fails to mine the image interaction relation with physical significance in each step of pan-sharpening, which not only limits the improvement of image resolution, but also ignores the physical interpretability of the models. To improve this situation, according to the traditional component substitution-based detail injection pan-sharpening model, we consider the matrix calculation in each step as the transformation between image pixel values and carry out linear transformations, and therefore the pan-sharpened multispectral image is represented as the sum of two multispectral images. Then given the spatial and spectral heterogeneity, the two summed images are decomposed based on the fact that any real number can be expressed as the product of two real numbers. Ultimately, the multispectral image pan-sharpening model can be constructed as the sum of two Hadamard products. We design a dual-branch network with attention mechanisms that merges the sum and the Hadamard products into a concise formulation. This method not only enhances physical interpretability but also improves spatial resolution. Experiments on five real-world datasets validate that the proposed multispectral image pan-sharpening model can improve performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
追逐的疯完成签到,获得积分10
1秒前
LL发布了新的文献求助10
2秒前
4秒前
郭宇发布了新的文献求助10
5秒前
慕青应助哈哈采纳,获得10
7秒前
CipherSage应助1111111111111采纳,获得10
8秒前
Serena发布了新的文献求助10
9秒前
善学以致用应助mama采纳,获得30
9秒前
花开富贵完成签到,获得积分20
10秒前
16秒前
17秒前
小杨完成签到 ,获得积分10
18秒前
平常元灵完成签到,获得积分10
19秒前
21秒前
小白加油完成签到 ,获得积分10
22秒前
23秒前
24秒前
Rw发布了新的文献求助10
24秒前
26秒前
28秒前
mama发布了新的文献求助30
28秒前
李铛铛发布了新的文献求助10
31秒前
潘果果完成签到,获得积分10
31秒前
karcorl发布了新的文献求助10
32秒前
文献看不懂应助zone采纳,获得10
32秒前
33秒前
Rw完成签到,获得积分20
34秒前
36秒前
36秒前
小蘑菇应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
orixero应助科研通管家采纳,获得10
37秒前
思源应助科研通管家采纳,获得30
37秒前
赘婿应助科研通管家采纳,获得30
37秒前
隐形曼青应助科研通管家采纳,获得10
37秒前
香蕉觅云应助科研通管家采纳,获得10
37秒前
英俊的铭应助科研通管家采纳,获得30
38秒前
Jasper应助科研通管家采纳,获得10
38秒前
大模型应助科研通管家采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976