An efficient manta ray foraging optimization algorithm with individual information interaction and fractional derivative mutation for solving complex function extremum and engineering design problems

计算机科学 数学优化 算法 无导数优化 最优化问题 全局优化 趋同(经济学) 早熟收敛 元优化 数学 粒子群优化 经济 经济增长
作者
Jingsen Liu,Chen Yang,Xiaoyu Liu,Fang Zuo,Huan Zhou
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:150: 111042-111042 被引量:6
标识
DOI:10.1016/j.asoc.2023.111042
摘要

The manta ray foraging optimization algorithm (MRFO) is a recently proposed meta-heuristic algorithm that mimics the foraging process of manta rays. It has yielded good outcomes in solving some optimization problems because its mechanism is clear, no additional parameters need to be set, and the balance between global and local search is good. Nonetheless, while dealing with high-dimensional global optimization and complex engineering optimization problems, there are also issues such as premature convergence, low optimization-seeking accuracy, or unstable solutions. To this end, this article proposes an efficient manta ray foraging optimization algorithm (NIFMRFO) by incorporating individual information interaction and fractional derivative mutation. First, to prevent premature convergence of the algorithm, a nonlinear cosine adjustment parameter is presented, which is intended to make the demand relationship between global exploration and local development more reasonable. Then, an information interaction strategy among random individuals is employed to expedite the rate at which the algorithm converges. Finally, a fractional derivative mutation strategy is utilized to continually enhance individuals' quality in each iteration, which not only increases the population diversity but also helps to improve the precision and stability of the search results. Theoretical analysis indicates that the improved NIFMRFO algorithm and basic MRFO algorithm have the same time complexity. In simulation experiments, the CEC2017 suite is used to conduct comparison tests with six superior-performance representative comparison algorithms in several dimensions. In terms of the optimization-seeking accuracy, convergence curve, violin plot, and Friedman average ranking, the analysis of these graphs and data shows that the NIFMRFO algorithm's ameliorated strategy improves superiority-seeking power, convergence speed, and steadiness. Meanwhile, the Wilcoxon rank-sum test result illustrates significant differences between NIFMRFO and other compared algorithms. Finally, these algorithms are utilized to tackle seven realistic engineering design optimization problems. The result makes it clear that NIFMRFO is distinctly superior to the other six algorithms, showing that its solving ability is superior and has broad application prospects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不要长胖完成签到,获得积分20
1秒前
热情语柔完成签到,获得积分10
1秒前
qqq完成签到,获得积分10
1秒前
2秒前
彭于晏应助cherish采纳,获得10
2秒前
妮可粒子完成签到,获得积分10
2秒前
3秒前
3秒前
仇书竹完成签到,获得积分10
3秒前
爱哭的小羽完成签到,获得积分10
5秒前
酷波er应助code_Z采纳,获得30
5秒前
筱宸发布了新的文献求助10
5秒前
6秒前
不要长胖发布了新的文献求助10
7秒前
7秒前
雪莉发布了新的文献求助10
8秒前
imcwj完成签到 ,获得积分10
9秒前
辣辣发布了新的文献求助10
10秒前
11秒前
13秒前
李学谦发布了新的文献求助10
13秒前
从容宛海发布了新的文献求助10
13秒前
是赵先森呀完成签到 ,获得积分10
14秒前
万能图书馆应助高君奇采纳,获得10
14秒前
天天快乐应助lm00024采纳,获得10
15秒前
16秒前
大个应助筱宸采纳,获得10
16秒前
cherish发布了新的文献求助10
18秒前
专注的翠彤完成签到,获得积分20
18秒前
只只呀发布了新的文献求助10
19秒前
糕糕完成签到,获得积分10
20秒前
搜集达人应助采玉采纳,获得10
20秒前
21秒前
橙子完成签到,获得积分10
22秒前
着急的雁露完成签到,获得积分20
22秒前
luca发布了新的文献求助50
23秒前
23秒前
24秒前
25秒前
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635