scGCC: Graph Contrastive Clustering With Neighborhood Augmentations for scRNA-Seq Data Analysis

聚类分析 计算机科学 稳健性(进化) 人工智能 过度拟合 数据挖掘 特征学习 机器学习 降维 推论 图形 模式识别(心理学) 相关聚类 人工神经网络 理论计算机科学 基因 生物化学 化学
作者
Shengwen Tian,Jiancheng Ni,Yutian Wang,Chun-Hou Zheng,Cunmei Ji
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 6133-6143 被引量:4
标识
DOI:10.1109/jbhi.2023.3319551
摘要

Single-cell RNA sequencing (scRNA-seq) has rapidly emerged as a powerful technique for analyzing cellular heterogeneity at the individual cell level. In the analysis of scRNA-seq data, cell clustering is a critical step in downstream analysis, as it enables the identification of cell types and the discovery of novel cell subtypes. However, the characteristics of scRNA-seq data, such as high dimensionality and sparsity, dropout events and batch effects, present significant computational challenges for clustering analysis. In this study, we propose scGCC, a novel graph self-supervised contrastive learning model, to address the challenges faced in scRNA-seq data analysis. scGCC comprises two main components: a representation learning module and a clustering module. The scRNA-seq data is first fed into a representation learning module for training, which is then used for data classification through a clustering module. scGCC can learn low-dimensional denoised embeddings, which is advantageous for our clustering task. We introduce Graph Attention Networks (GAT) for cell representation learning, which enables better feature extraction and improved clustering accuracy. Additionally, we propose five data augmentation methods to improve clustering performance by increasing data diversity and reducing overfitting. These methods enhance the robustness of clustering results. Our experimental study on 14 real-world datasets has demonstrated that our model achieves extraordinary accuracy and robustness. We also perform downstream tasks, including batch effect removal, trajectory inference, and marker genes analysis, to verify the biological effectiveness of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的惊蛰完成签到,获得积分10
刚刚
寡核苷酸小白完成签到,获得积分10
1秒前
三三完成签到,获得积分10
1秒前
123完成签到 ,获得积分10
3秒前
Shaynin完成签到,获得积分10
4秒前
愉快寒香完成签到,获得积分10
5秒前
小杨完成签到 ,获得积分10
5秒前
超级裁缝完成签到,获得积分10
5秒前
9秒前
ldzjiao完成签到 ,获得积分10
9秒前
9秒前
ding应助Curry采纳,获得10
11秒前
七月完成签到 ,获得积分10
11秒前
愉快寒香发布了新的文献求助10
13秒前
16秒前
喜来乐完成签到,获得积分10
16秒前
南城雨落完成签到,获得积分10
19秒前
Ly完成签到,获得积分10
19秒前
你都至少信我八分吧完成签到 ,获得积分10
19秒前
小米的稻田完成签到 ,获得积分10
20秒前
chen完成签到,获得积分10
21秒前
小许会更好完成签到,获得积分10
22秒前
Curry发布了新的文献求助10
22秒前
离子电池完成签到,获得积分10
22秒前
纯真雁菱完成签到,获得积分10
24秒前
慕容杏子完成签到,获得积分10
25秒前
CrsCrsCrs完成签到,获得积分10
27秒前
欣喜的代容完成签到 ,获得积分0
27秒前
kk完成签到,获得积分20
30秒前
31秒前
Justtry完成签到,获得积分10
34秒前
36秒前
xyzlancet完成签到,获得积分10
36秒前
白云发布了新的文献求助10
37秒前
东北饿霸完成签到,获得积分10
37秒前
虚心的仙人掌完成签到,获得积分0
39秒前
学术小子完成签到,获得积分10
40秒前
smottom完成签到,获得积分10
41秒前
43秒前
哲999完成签到,获得积分10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946218
求助须知:如何正确求助?哪些是违规求助? 3491137
关于积分的说明 11059098
捐赠科研通 3222085
什么是DOI,文献DOI怎么找? 1780839
邀请新用户注册赠送积分活动 865866
科研通“疑难数据库(出版商)”最低求助积分说明 800083