A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries

联营 计算机科学 电池(电) 主成分分析 可靠性(半导体) 人工智能 数据挖掘 支持向量机 人工神经网络 核(代数) 卷积神经网络 机器学习 模式识别(心理学) 功率(物理) 物理 数学 量子力学 组合数学
作者
Juqiang Feng,Feng Cai,H. J. Li,Kaifeng Huang,Hao Yin
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:180: 601-615 被引量:23
标识
DOI:10.1016/j.psep.2023.10.042
摘要

Accurate prediction of remaining useful life (RUL) can ensure the safety and reliability of power batteries during operation, reduce the failure rate and operating costs, and enhance user experience. However, battery degradation is a complex, nonlinear dynamic process that is difficult to fully comprehend and predicting RUL remains a significant challenge. To address this issue, the hybrid data-driven prediction model PCA-CNN-BiLSTM was proposed in this paper, which combines principal component analysis (PCA), convolutional neural network (CNN), and bi-directional long short-term memory (Bi-LSTM) network. PCA was applied to downscale and whiten the health factor (HF) to maximize the extraction of important features of lifespan decay, while reducing the correlation between features. The convolution kernel of the CNN was used to explore the local region feature information of the input information and search for the common patterns among the neighboring data. Additionally, the model parameters and computational efforts were reduced through pooling. Finally, battery RUL prediction was achieved using Bi-LSTM, which has the advantages of effectively enhancing model accuracy and reducing the risk of over-fitting by taking into account both past and future data. The performance of the proposed model was evaluated utilizing NASA and CALCE's battery datasets, and the results suggest that it exhibits a high level of accuracy across various datasets. Compared to other methods, the PCA-CNN-BiLSTM method has the best performance indicators for predicting battery RUL, including RMSE, MAE, MAPE, RULe and DOL. This indicates that the proposed model has better fitting performance, accuracy, robustness, and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助pentjy采纳,获得10
刚刚
net完成签到 ,获得积分10
刚刚
刚刚
赘婿应助Hailin采纳,获得10
刚刚
1秒前
书篆发布了新的文献求助30
1秒前
shirely发布了新的文献求助10
2秒前
公孙玲珑发布了新的文献求助10
2秒前
3秒前
英俊的铭应助猕猴桃大王采纳,获得10
4秒前
5秒前
5秒前
敏尔完成签到,获得积分10
5秒前
kk发布了新的文献求助10
6秒前
好名字发布了新的文献求助10
6秒前
我是老大应助dengxu采纳,获得10
8秒前
英俊的铭应助littlestar采纳,获得10
9秒前
wxy发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
Re发布了新的文献求助10
11秒前
ptj发布了新的文献求助10
11秒前
打打应助mujin采纳,获得10
12秒前
12秒前
开心的曲奇完成签到,获得积分10
12秒前
13秒前
13秒前
成就的绮烟完成签到,获得积分10
14秒前
weirdo发布了新的文献求助10
14秒前
15秒前
pentjy发布了新的文献求助10
16秒前
16秒前
ycp完成签到,获得积分10
16秒前
Yyyu关注了科研通微信公众号
16秒前
好名字完成签到,获得积分10
17秒前
健忘的芷荷完成签到,获得积分10
17秒前
斯文芷荷发布了新的文献求助10
17秒前
付传奎完成签到,获得积分10
18秒前
littlestar完成签到,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761