HTMapper: Bidirectional Head-Tail Mapping for Nested Named Entity Recognition

计算机科学 命名实体识别 条件随机场 主管(地质) 边界(拓扑) 人工智能 代表(政治) 自然语言处理 模式识别(心理学) 任务(项目管理) 数据挖掘 数学 数学分析 管理 地貌学 政治 政治学 法学 经济 地质学
作者
Jin Zhi Zhao,Zhixu Li,Yanghua Xiao,Jiaqing Liang,Jingping Liu
标识
DOI:10.1145/3583780.3614919
摘要

Nested named entity recognition (Nested NER) aims to identify entities with nested structures from the given text, which is a fundamental task in Natural Language Processing. The region-based approach is the current mainstream approach, which first generates candidate spans and then classifies them into predefined categories. However, this method suffers from several drawbacks, including over-reliance on span representation, vulnerability to unbalanced category distribution, and inaccurate span boundary detection. To address these problems, we propose to model the nested NER problem into a head-tail mapping problem, namely, HTMapper, which detects head boundaries first and then models a conditional mapping from head to tail under a given category. Based on this mapping, we can find corresponding tails under different categories for each detected head by enumerating all entity categories. Our approach directly models the head boundary and tail boundary of entities, avoiding over-reliance on the span representation. Additionally, Our approach utilizes category information as an indicator signal to address the imbalance of category distribution during category prediction. Furthermore, our approach enhances the detection of span boundaries by capturing the correlation between head and tail boundaries. Extensive experiments on three nested NER datasets and two flat NER datasets demonstrate that our HTMapper achieves excellent performance with F1 scores of 89.09%, 88.30%, 81.57% on ACE2004,ACE2005, GENIA, and 94.26%, 91.40% on CoNLL03, OntoNotes, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ying完成签到,获得积分10
刚刚
安彩青完成签到 ,获得积分10
1秒前
1秒前
奔铂儿钯发布了新的文献求助10
1秒前
sasa完成签到,获得积分10
1秒前
3秒前
3秒前
傻傻乐完成签到,获得积分10
3秒前
Roger完成签到,获得积分10
3秒前
花小胖完成签到,获得积分10
3秒前
荣不弱完成签到,获得积分10
4秒前
4秒前
所所应助小猪采纳,获得10
4秒前
小王完成签到 ,获得积分10
4秒前
6秒前
6秒前
乔乔完成签到,获得积分10
6秒前
哆啦A梦完成签到,获得积分10
6秒前
7秒前
slowride完成签到,获得积分10
8秒前
火星上含芙完成签到,获得积分10
8秒前
8秒前
健忘书兰完成签到,获得积分10
8秒前
9秒前
难摧发布了新的文献求助10
9秒前
星辰大海应助Jackcaosky采纳,获得10
9秒前
9秒前
李薇完成签到,获得积分10
10秒前
小二郎应助yuzhihui采纳,获得10
10秒前
板凳儿cc发布了新的文献求助10
10秒前
yuting完成签到,获得积分10
10秒前
10秒前
自信安荷完成签到,获得积分10
10秒前
小白发布了新的文献求助10
11秒前
孙梁子完成签到,获得积分10
11秒前
slowride发布了新的文献求助10
12秒前
一颗小白菜完成签到,获得积分10
12秒前
hailang820316完成签到,获得积分10
14秒前
Jianxiu给Jianxiu的求助进行了留言
14秒前
霏冉完成签到,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816043
求助须知:如何正确求助?哪些是违规求助? 3359559
关于积分的说明 10403403
捐赠科研通 3077404
什么是DOI,文献DOI怎么找? 1690297
邀请新用户注册赠送积分活动 813734
科研通“疑难数据库(出版商)”最低求助积分说明 767781