Clinical narratives as a predictor for prognosticating functional outcomes after intracerebral hemorrhage

脑出血 改良兰金量表 医学 接收机工作特性 基线(sea) 人工智能 人口 冲程(发动机) 集合(抽象数据类型) 机器学习 内科学 缺血性中风 计算机科学 机械工程 海洋学 环境卫生 缺血 蛛网膜下腔出血 工程类 程序设计语言 地质学
作者
Ling-Chien Hung,Yingying Su,Jui‐Ming Sun,Wan‐Ting Huang,Sheng‐Feng Sung
出处
期刊:Journal of the Neurological Sciences [Elsevier BV]
卷期号:453: 120807-120807 被引量:4
标识
DOI:10.1016/j.jns.2023.120807
摘要

Intracerebral hemorrhage (ICH) is a devastating stroke type that causes high mortality rates and severe disability among survivors. Many prognostic models are available for prognosticating patients with ICH. This study aimed to investigate whether clinical narratives can improve the performance for predicting functional outcomes after ICH.This study used data from the hospital stroke registry and electronic health records. The study population (n = 1363) was randomly divided into a training set (75%, n = 1023) and a holdout test set (25%, n = 340). Five risk scores for ICH were used as baseline prognostic models. Using natural language processing (NLP), text-based markers were generated from the clinical narratives of the training set through machine learning (ML) and deep learning (DL) approaches. The primary outcome was a poor functional outcome (modified Rankin Scale score of 3 to 6) at hospital discharge. The predictive performance was compared between the baseline models and models enhanced by incorporating the text-based markers using the holdout test set.The enhanced prognostic models outperformed the baseline models, regardless of whether ML or DL approaches were used. The areas under the receiver operating characteristic curve (AUCs) of the baseline models were between 0.760 and 0.892. Adding the text-based marker to the baseline models significantly increased the model discrimination, with AUCs ranging from 0.861 to 0.914. The net reclassification improvement and integrated discrimination improvement indices also showed significant improvements.Using NLP to extract textual information from clinical narratives could improve the predictive performance of all baseline prognostic models for ICH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牡丹花下发布了新的文献求助10
1秒前
王心桐发布了新的文献求助10
1秒前
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
兔子发布了新的文献求助10
6秒前
6秒前
灯火完成签到,获得积分10
8秒前
9秒前
香蕉觅云应助taowang采纳,获得30
11秒前
Huayan发布了新的文献求助10
11秒前
搜集达人应助蒋磊采纳,获得10
12秒前
灯火发布了新的文献求助30
13秒前
李健的小迷弟应助FKKKKSY采纳,获得10
14秒前
Tangyartie完成签到 ,获得积分10
16秒前
17秒前
顽固分子完成签到 ,获得积分10
18秒前
牡丹花下完成签到 ,获得积分10
18秒前
19秒前
20秒前
无聊的玉米完成签到,获得积分10
21秒前
许志荣发布了新的文献求助10
22秒前
23秒前
23秒前
赘婿应助日月同辉采纳,获得10
23秒前
Ava应助sendou采纳,获得10
23秒前
24秒前
今北完成签到,获得积分10
24秒前
花无双完成签到,获得积分0
24秒前
FKKKKSY完成签到,获得积分10
24秒前
Xiaoxiao发布了新的文献求助10
25秒前
陈同学完成签到,获得积分10
25秒前
小巧钢笔发布了新的文献求助10
25秒前
Hina完成签到,获得积分10
25秒前
自然的霸发布了新的文献求助10
26秒前
sonicker完成签到 ,获得积分10
28秒前
真龙狂婿完成签到,获得积分10
28秒前
FKKKKSY发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784551
求助须知:如何正确求助?哪些是违规求助? 4111791
关于积分的说明 12720731
捐赠科研通 3836495
什么是DOI,文献DOI怎么找? 2115374
邀请新用户注册赠送积分活动 1138370
关于科研通互助平台的介绍 1024339