计算机科学
瓶颈
计算复杂性理论
卷积神经网络
分割
杠杆(统计)
编码器
人工智能
计算机工程
变压器
卷积(计算机科学)
图像分割
编码(集合论)
算法
模式识别(心理学)
人工神经网络
嵌入式系统
电压
物理
集合(抽象数据类型)
量子力学
程序设计语言
操作系统
作者
Bui Van Dinh,Thanh-Thu Nguyen,Thi-Thao Tran,Van-Truong Pham
标识
DOI:10.1109/apsipaasc58517.2023.10317244
摘要
Convolutional neural networks (CNNs) and Transformer-based models are being widely applied in medical image segmentation thanks to their ability to extract high-level features and capture important aspects of the image. However, there is often a trade-off between the need for high accuracy and the desire for low computational cost. A model with higher parameters can theoretically achieve better performance but also result in more computational complexity and higher memory usage, and thus is not practical to implement. In this paper, we look for a lightweight U-Net-based model which can remain the same or even achieve better performance, namely U-Lite. We designed U-Lite based on the principle of Depthwise Separable Convolution so that the model can both leverage the strength of CNNs and reduce a remarkable number of computing parameters. Specifically, we propose Axial Depthwise Convolutions with kernels 7× 7 in both the encoder and decoder to enlarge the model’s receptive field. To further improve the performance, we use several Axial Dilated Depthwise Convolutions with filters 3× 3for the bottleneck as one of our branches. Overall, U-Lite contains only 878K parameters, 35 times less than the traditional U-Net, and much more times less than other modern Transformer-based models. The proposed model cuts down a large amount of computational complexity while attaining an impressive performance on medical segmentation tasks compared to other state-of-the-art architectures. The code will be available at: https://github.com/duong-db/U-Lite.
科研通智能强力驱动
Strongly Powered by AbleSci AI