已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PSO-BP-Based Morphology Prediction Method for DED Remanufactured Deposited Layers

粒子群优化 沉积(地质) 图层(电子) 材料科学 再制造 能量(信号处理) 人工神经网络 过程(计算) 计算机科学 生物系统 机械工程 算法 人工智能 复合材料 工程类 数学 地质学 古生物学 操作系统 统计 生物 沉积物
作者
Zisheng Wang,Xingyu Jiang,Boxue Song,Guozhe Yang,Weijun Liu,Tongming Liu,Zhijia Ni,Zhang Ren
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (8): 6437-6437 被引量:4
标识
DOI:10.3390/su15086437
摘要

Directed energy deposition is a typical laser remanufacturing technology, which can effectively repair failed parts and extend their service life, and has been widely used in aerospace, metallurgy, energy and other high-end equipment key parts remanufacturing. However, the repair quality and performance of the repaired parts have been limited by the morphological and quality control problems of the process because of the formation mechanism and process of the deposition. The main reason is that the coupling of multiple process parameters makes the deposited layer morphology and surface properties difficult to be accurately predicted, which makes it difficult to regulate the process. Thus, the deposited layer forming mechanism and morphological properties of directed energy deposition were systematically analyzed, the height and width of multilayer deposition layers were taken as prediction targets, and a PSO-BP-based model for predicting the morphology of directed energy deposited layers was settled. The weights and thresholds of Back Propagation (BP) neural networks were optimized using a Particle Swarm Optimization (PSO) algorithm, the predicted values of deposited layer morphology for different process parameters were obtained, and the problem of low accuracy of deposited layer morphology prediction due to slow convergence and poor uniformity of the solution set of traditional optimization models was addressed. Remanufacturing experiments were conducted, and the experimental results showed that the deposited layer morphology prediction model proposed in this paper has a high prediction accuracy, with an average prediction error of 1.329% for the layer height and 0.442% for the layer width. The research of the paper provided an effective way to control the morphology and properties of the directed energy deposition process. A valuable contribution is made to the field of laser remanufacturing technology, and significant implications are held for various industries such as aerospace, metallurgy, and energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
anya完成签到,获得积分10
1秒前
淡定友有发布了新的文献求助10
2秒前
汉堡包应助旭旭采纳,获得10
2秒前
嘿嘿应助jy采纳,获得10
3秒前
Lyw完成签到 ,获得积分10
3秒前
季刘杰完成签到 ,获得积分10
3秒前
3秒前
3秒前
bkagyin应助jiaolulu采纳,获得10
3秒前
完美天蓝完成签到 ,获得积分10
4秒前
屠夫9441完成签到,获得积分10
4秒前
周杰完成签到,获得积分10
4秒前
CHZBH发布了新的文献求助10
5秒前
科研fw完成签到 ,获得积分10
5秒前
三泥完成签到,获得积分10
6秒前
111完成签到 ,获得积分10
7秒前
狗十七完成签到 ,获得积分10
7秒前
7秒前
7秒前
洸彦完成签到 ,获得积分10
7秒前
陈思远完成签到 ,获得积分10
8秒前
8秒前
Ania99完成签到 ,获得积分10
8秒前
10秒前
rick3455完成签到 ,获得积分10
10秒前
彭于晏应助zht采纳,获得20
10秒前
xuan发布了新的文献求助10
11秒前
apollo3232完成签到,获得积分0
11秒前
Maryamgvl完成签到 ,获得积分10
11秒前
野生菜狗完成签到,获得积分20
12秒前
kaiqiang完成签到,获得积分0
12秒前
繁笙完成签到 ,获得积分10
12秒前
yeurekar发布了新的文献求助10
12秒前
紫薯球完成签到,获得积分10
13秒前
HOLLYWOO完成签到 ,获得积分10
13秒前
hhhhh完成签到 ,获得积分10
13秒前
James发布了新的文献求助10
14秒前
Raynald完成签到,获得积分10
15秒前
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334237
求助须知:如何正确求助?哪些是违规求助? 4472439
关于积分的说明 13920086
捐赠科研通 4366257
什么是DOI,文献DOI怎么找? 2398949
邀请新用户注册赠送积分活动 1392120
关于科研通互助平台的介绍 1362828

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10