Electron doping of SmNiO3 via interfacial charge transfer: A first-principles study

超晶格 兴奋剂 凝聚态物理 材料科学 磁性 密度泛函理论 电子结构 堆积 化学物理 化学 计算化学 物理 有机化学
作者
Yakui Weng,Fei Long,Yinan Chen,Fen Miao,Jie Li,Jie Cheng,Xing’ao Li
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:133 (23)
标识
DOI:10.1063/5.0151548
摘要

SmNiO3 is a representative quantum material exhibiting the antidoping behavior, where the conductivity of the material is reduced rather than increased by electron doping. Recent experimental and theoretical works have demonstrated a phase transition of SmNiO3 with large conductance changes via chemical methods. However, the effect of electron doping via interfacial charge transfer in SmNiO3 is much less studied. In this work, the first-principles density functional theory (DFT)+U method is employed to investigate the SmNiO3/YTiO3 superlattice, in which the YTiO3 layer acts as the electron donor. Compared with the chemical doping in SmNiO3, several interesting physical phenomena have been predicted in SmNiO3/YTiO3 superlattices due to the lattice and electronic reconstructions. First, at a doping concentration of 1e− per Ni, i.e., (SmNiO3)1/(YTiO3)1 superlattice, all Ni3+ are converted to Ni2+, resulting in a Mott-insulating phase, similar to the chemical doping in the pristine material. Interestingly, such a Mott gap can be efficiently modulated by tuning the stacking orientation. Second, at a doping concentration of 12e− per Ni, i.e., [001]-orientated (SmNiO3)2/(YTiO3)1 superlattice, the electronic structure associated with charge ordering depends on the concrete magnetic order, giving rise to magnetism-dependent electronic behavior. In addition, as the doping concentration further decreases (i.e., a doping concentration of 13e−/Ni), a metallic state is predicted in a [001]-orientated (SmNiO3)3/(YTiO3)1 superlattice, which is quite different from the case of chemical doping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
2秒前
若叶若岚发布了新的文献求助10
2秒前
wyy完成签到,获得积分20
2秒前
3秒前
浮游应助jiajinxu采纳,获得10
3秒前
qwl发布了新的文献求助10
3秒前
4秒前
4秒前
jade257完成签到,获得积分10
4秒前
4秒前
万能图书馆应助Lalala采纳,获得10
4秒前
含蓄泽洋关注了科研通微信公众号
4秒前
4秒前
5秒前
丘比特应助搞怪文轩采纳,获得10
5秒前
xl完成签到,获得积分20
5秒前
jiangqin123发布了新的文献求助10
5秒前
韶光换完成签到,获得积分10
6秒前
6秒前
6秒前
兴奋冷风完成签到,获得积分10
6秒前
林鸽完成签到 ,获得积分10
6秒前
soga完成签到,获得积分10
6秒前
重要砖头完成签到,获得积分10
7秒前
次次实验次次成应助Beni采纳,获得10
7秒前
7秒前
阳光海云完成签到,获得积分10
7秒前
非而者厚应助花在开采纳,获得10
8秒前
月月发布了新的文献求助10
8秒前
9秒前
Benjamin发布了新的文献求助10
9秒前
结实大碗发布了新的文献求助10
9秒前
jiaye发布了新的文献求助10
9秒前
xl发布了新的文献求助10
10秒前
11秒前
汉堡包应助孤独的猕猴桃采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747141
求助须知:如何正确求助?哪些是违规求助? 4094371
关于积分的说明 12667580
捐赠科研通 3806367
什么是DOI,文献DOI怎么找? 2101402
邀请新用户注册赠送积分活动 1126745
关于科研通互助平台的介绍 1003322