Fitness-Distance-Constraint (FDC) based guide selection method for constrained optimization problems

数学优化 进化算法 约束(计算机辅助设计) 计算机科学 差异进化 选择(遗传算法) 成对比较 威尔科克森符号秩检验 最优化问题 过程(计算) 数学 人工智能 统计 几何学 曼惠特尼U检验 操作系统
作者
Burçin Özkaya,Hamdi Tolga Kahraman,Serhat Duman,Uğur Güvenç
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:144: 110479-110479 被引量:37
标识
DOI:10.1016/j.asoc.2023.110479
摘要

In the optimization of constrained type problems, the main difficulty is the elimination of the constraint violations in the evolutionary search process. Evolutionary algorithms are designed by default according to the requirements of unconstrained and continuous global optimization problems. Since there are no constraint functions in these type of problems, the constraint violations are not considered in the design of the guiding mechanism of evolutionary algorithms. In this study, two new methods were introduced to redesign the evolutionary algorithms in accordance with the requirements of constrained optimization problems. These were (i) constraint space-based, called Fitness-Distance-Constraint (FDC), selection method and (ii) dynamic guiding mechanism. Firstly, thanks to the FDC guide selection method, the constraint violation values of the individuals in the population were converted into score values and the individuals who increase the diversity in the search process were selected as guide. On the other hand, in dynamic guiding mechanism, the FDC method was applied in case of constraint violation, otherwise the default guide selection method was used The proposed methods were used to redesign the guiding mechanism of adaptive guided differential evolution (AGDE), a current evolutionary algorithm, and the FDC-AGDE algorithm was designed. The performance of the FDC-AGDE was tested on eleven different constrained real-world optimization problems. The results of the FDC-AGDE and AGDE were evaluated using the Friedman and Wilcoxon test methods. According to Wilcoxon pairwise results, the FDC-AGDE showed better performance than the AGDE in nine of the eleven problems and equal performance in two of the eleven problems. Moreover, the proposed algorithm was compared with the competitive and up-to-date MHS algorithms in terms of the results of Friedman test, Wilcoxon test, feasibility rate, and success rate. According to Friedman test results, the first three algorithms were the FDC-AGDE, LSHADE-SPACMA, and AGDE algorithms with the score of 2.69, 4.05, and 4.34, respectively. According to the mean values of the success rates obtained from the eleven problems, the FDC-AGDE, LSHADE-SPACMA, and AGDE algorithms ranked in the first three with the success rates of 67%, 48% and 28%, respectively. Consequently, the FDC-AGDE algorithm showed a superior performance comparing with the competing MHS algorithms. According to the results, it is expected that the proposed methods will be widely used in the constrained optimization problems in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助ych采纳,获得10
1秒前
rain123发布了新的文献求助10
1秒前
xin发布了新的文献求助10
2秒前
2秒前
2秒前
CipherSage应助牛马采纳,获得10
2秒前
王国伟发布了新的文献求助10
3秒前
3秒前
勤劳的小蜜蜂完成签到 ,获得积分10
4秒前
科研通AI6应助龙歪歪采纳,获得30
4秒前
新橙发布了新的文献求助10
4秒前
4秒前
LQ发布了新的文献求助30
4秒前
Luo完成签到,获得积分20
4秒前
Res_M完成签到,获得积分10
4秒前
5秒前
6秒前
LHW完成签到,获得积分10
6秒前
6秒前
???完成签到,获得积分10
6秒前
wch666发布了新的文献求助10
6秒前
PSA发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
李健应助blue采纳,获得20
7秒前
郝煜祺完成签到,获得积分10
8秒前
慕青应助儒雅大象采纳,获得10
8秒前
8秒前
自觉宛筠完成签到 ,获得积分10
10秒前
接accept完成签到 ,获得积分10
10秒前
WYF1996发布了新的文献求助10
10秒前
sherry发布了新的文献求助10
11秒前
11秒前
嘉嘉完成签到 ,获得积分10
12秒前
wyg117发布了新的文献求助10
13秒前
13秒前
香蕉觅云应助77采纳,获得10
13秒前
14秒前
小梁今天也要努力呀完成签到 ,获得积分10
14秒前
FashionBoy应助小猪采纳,获得10
14秒前
三点水发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873