亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG-based Emotion Recognition in Immersive Virtual Reality: Meeting the Requirement of Accuracy and Computational Efficiency

虚拟现实 计算机科学 脑电图 价(化学) 人工智能 互动性 情绪识别 模式识别(心理学) 多媒体 心理学 量子力学 精神科 物理
作者
Guanxiong Pei,Cunhang Fan,Taihao Li,Jia Jin,Rui Wang
标识
DOI:10.1145/3585542.3585544
摘要

Virtual reality technology provides a strong sense of immersion and interactivity. It is widely used in the fields of anxiety relief, fear therapy, and depression regulation. However, objectively evaluating the emotional intervention effect of virtual reality technology is a difficult problem. The main purpose of this paper is to explore the use of EEG signals to identify individual emotional states in virtual reality scenarios and to improve the computational efficiency and recognition accuracy of emotional valence. To induce the target emotional state of the participants, we established a relatively standard emotion-induced virtual reality video library. The EEG data of the participants were collected synchronously as they watched the virtual reality video. The results show that the emotion recognition performance of multiple features (energy spectrum, differential entropy, differential asymmetry, and rational asymmetry) is better than that of a single feature. The radial basis function neural network (RBFNN) performed better than the deep belief network (DBN). RBFNN achieves the highest average classification accuracy of 91.1%. By combining the feature selection (F-test) method with the RBFNN, an ideal classification performance can be maintained with computational efficiency improvements. Furthermore, it is demonstrated that the features extracted from the theta band outperform features extracted from other bands in emotional valence decoding. These results may contribute to the application of EEG-based affective computing technology in the field of psychological rehabilitation and assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助科研通管家采纳,获得10
7秒前
潘振玄发布了新的文献求助10
11秒前
37秒前
46秒前
51秒前
邢契发布了新的文献求助10
55秒前
丘比特应助芋泥采纳,获得10
1分钟前
邢契完成签到,获得积分10
1分钟前
星际舟完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
奈思完成签到 ,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
务实的犀牛完成签到,获得积分10
4分钟前
6分钟前
默默善愁发布了新的文献求助30
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
110o发布了新的文献求助10
6分钟前
SciGPT应助默默善愁采纳,获得10
6分钟前
110o发布了新的文献求助10
6分钟前
110o完成签到,获得积分10
7分钟前
深情的楷瑞完成签到 ,获得积分10
7分钟前
故酒应助科研通管家采纳,获得10
8分钟前
我是老大应助科研通管家采纳,获得10
8分钟前
幸运的姜姜完成签到 ,获得积分10
8分钟前
zsmj23完成签到 ,获得积分0
8分钟前
9分钟前
默默善愁发布了新的文献求助10
9分钟前
Akim应助科研通管家采纳,获得10
10分钟前
ceeray23应助科研通管家采纳,获得10
10分钟前
故酒应助科研通管家采纳,获得10
10分钟前
bkagyin应助默默善愁采纳,获得10
10分钟前
宅心仁厚完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186784
求助须知:如何正确求助?哪些是违规求助? 4371864
关于积分的说明 13612642
捐赠科研通 4224592
什么是DOI,文献DOI怎么找? 2317098
邀请新用户注册赠送积分活动 1315749
关于科研通互助平台的介绍 1265057