清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Developing a Machine‐Learning Predictive Model for Retention of Posterior Cruciate Ligament in Patients Undergoing Total Knee Arthroplasty

后交叉韧带 医学 全膝关节置换术 关节置换术 外科 前交叉韧带
作者
Long Chen,Li-Yi Zhang,Diange Zhou,Shengjie Dong,Dan Xing
出处
期刊:Orthopaedic Surgery [Wiley]
卷期号:16 (6): 1381-1389 被引量:1
标识
DOI:10.1111/os.14076
摘要

Objective Predicting whether the posterior cruciate ligament (PCL) should be preserved during total knee arthroplasty (TKA) procedures is a complex task in the preoperative phase. The choice to either retain or excise the PCL has a substantial effect on the surgical outcomes and biomechanical integrity of the knee joint after the operation. To enhance surgeons' ability to predict the removal and retention of the PCL in patients before TKA, we developed machine learning models. We also identified significant feature factors that contribute to accurate predictions during this process. Methods Patients' data on TKA continuously performed by a single surgeon who had intended initially to undergo implantation of cruciate‐retaining (CR) prostheses was collected. During the sacrifice of PCL, we utilized anterior‐stabilized (AS) tibial bearings. The dataset was split into CR and AS categories to form distinct groups. Relevant information regarding age, gender, body mass index (BMI), the affected side, and preoperative diagnosis was extracted by reviewing the medical records of the patients. To ensure the authenticity of the research, an initial step involved capturing X‐ray images before the surgery. These images were then analyzed to determine the height of the medial condyle (MMH) and lateral condyle (LMH), as well as the ratios between MLW and MMH and MLW and LMH. Additionally, the insall‐salvati index (ISI) was calculated, and the severity of any varus or valgus deformities was assessed. Eight machine‐learning methods were developed to predict the retention of PCL in TKA. Risk factor analysis was performed using the SHApley Additive exPlanations method. Results A total of 307 knee joints from 266 patients were included, among which there were 254 females and 53 males. A stratified random sampling technique was used to split patients in a 70:30 ratio into a training dataset and a testing dataset. Eight machine‐learning models were trained using data feeding. Except for the AUC of the LGBM Classifier, which is 0.70, the AUCs of other machine learning models are all lower than 0.70. In importance‐based analysis, ISI, MMH, LMH, deformity, and age were confirmed as important predictive factors for PCL retention in operations. Conclusion The LGBM Classifier model achieved the best performance in predicting PCL retention in TKA. Among the potential risk factors, ISI, MMH, LMH, and deformity played essential roles in the prediction of PCL retention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcbb完成签到,获得积分10
30秒前
xingsixs完成签到 ,获得积分10
32秒前
45秒前
Jack80发布了新的文献求助100
48秒前
1分钟前
joycelin发布了新的文献求助10
1分钟前
joycelin完成签到,获得积分10
1分钟前
1分钟前
领导范儿应助lysun采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
SYLH应助Chen采纳,获得10
3分钟前
菁菁发布了新的文献求助10
4分钟前
Sunny完成签到,获得积分10
4分钟前
知行者完成签到 ,获得积分10
4分钟前
通科研完成签到 ,获得积分10
4分钟前
XD824发布了新的文献求助10
4分钟前
OMR123完成签到,获得积分10
5分钟前
xun关闭了xun文献求助
5分钟前
糟糕的翅膀完成签到,获得积分10
6分钟前
小学生的练习簿完成签到,获得积分10
7分钟前
努力努力再努力完成签到,获得积分10
7分钟前
gszy1975完成签到,获得积分10
7分钟前
宇文非笑完成签到 ,获得积分0
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
gwbk完成签到,获得积分10
8分钟前
xun发布了新的文献求助10
9分钟前
9分钟前
我是老大应助xun采纳,获得10
9分钟前
实力不允许完成签到 ,获得积分10
9分钟前
rick3455完成签到 ,获得积分10
9分钟前
9分钟前
xun发布了新的文献求助10
10分钟前
星辰大海应助xun采纳,获得10
10分钟前
迷茫的一代完成签到,获得积分10
10分钟前
11分钟前
xun发布了新的文献求助10
11分钟前
11分钟前
jane发布了新的文献求助10
11分钟前
科研通AI5应助jane采纳,获得10
11分钟前
淡定的思松完成签到 ,获得积分10
12分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784800
求助须知:如何正确求助?哪些是违规求助? 3330056
关于积分的说明 10244242
捐赠科研通 3045404
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800592
科研通“疑难数据库(出版商)”最低求助积分说明 759508