Sparse Graph Transformer With Contrastive Learning

计算机科学 图嵌入 邻接矩阵 变压器 特征学习 人工智能 图形 机器学习 理论计算机科学 电压 量子力学 物理
作者
Chun-Yang Zhang,Wu-Peng Fang,Hai-Chun Cai,C. L. Philip Chen,Yue-Na Lin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 892-904 被引量:8
标识
DOI:10.1109/tcss.2022.3232117
摘要

Information aggregation and propagation over networks via graph neural networks (GNNs) plays an important role in node or graph representation learning, which currently depend on the calculation with a fixed adjacency matrix, facing over-smoothing problem, and difficulty to stack multiple layers for high-level representations. In contrast, Transformer calculates an importance score for each node to learn its embedding via the attention mechanism and has achieved great successes in many natural language processing (NLP) and computer vision (CV) tasks. However, Transformer is inflexible to extend to graphs, as its input and output must have the same dimension. It will also become intractable to allocate attention over a large-scale graph due to distractions. Moreover, most graph Transformers are trained in supervised ways, which consume additional resources to annotate samples with potentially wrong labels and have limited generalization of representations. Therefore, this article attempts to build a new Sparse Graph Transformer with Contrastive learning for graph representation learning, called SGTC. Specifically, we first employ centrality measures to remove the redundant topological information from input graph according to the influences of nodes and edges, then disturb the pruned graph to get two different augmentation views, and learn node representations in a contrastive manner. Besides, a novel sparse attention mechanism is also proposed to capture structural features of graphs, which effectively save memory and training time. SGTC can produce low-dimensional and high-order node representations, which have better generalization for multiple tasks. The proposed model is evaluated on three downstream tasks over six networks, and experimental results confirm its superior performance against the state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
瑶一瑶发布了新的文献求助10
3秒前
刘歌发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
我是老大应助yyy采纳,获得10
6秒前
6秒前
抽刀断水发布了新的文献求助10
6秒前
7秒前
youzi发布了新的文献求助20
8秒前
8秒前
mingyu完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
天天快乐应助聆风采纳,获得10
10秒前
hi发布了新的文献求助10
10秒前
10秒前
hipig完成签到 ,获得积分10
10秒前
ZhouZhou完成签到 ,获得积分10
11秒前
你好发布了新的文献求助10
11秒前
心灵美的怜蕾完成签到,获得积分10
11秒前
zhy发布了新的文献求助10
12秒前
12秒前
王珺关注了科研通微信公众号
13秒前
14秒前
ly完成签到,获得积分10
14秒前
14秒前
14秒前
伍六七发布了新的文献求助10
15秒前
15秒前
BillowHu发布了新的文献求助10
16秒前
zero0122发布了新的文献求助100
18秒前
坦率的匪发布了新的文献求助50
19秒前
冷酷小松鼠完成签到,获得积分20
19秒前
komisan完成签到 ,获得积分10
20秒前
自然语薇发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265