A data balancing approach based on generative adversarial network

计算机科学 入侵检测系统 鉴别器 瓶颈 数据挖掘 异常检测 发电机(电路理论) 基于异常的入侵检测系统 人工智能 机器学习 量子力学 电信 探测器 物理 嵌入式系统 功率(物理)
作者
Lixiang Yuan,Siyang Yu,Zhibang Yang,Mingxing Duan,Kenli Li
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:141: 768-776 被引量:10
标识
DOI:10.1016/j.future.2022.12.024
摘要

Intrusion detection is an effective means of ensuring the proper functioning of industrial control systems (ICSs). Most intrusion detection algorithms learn the historical ICS data to gain the ability to identify and detect intrusions. However, there is little abnormal historical data used to train intrusion detection systems, so algorithms cannot fully learn the characteristics of erroneous data and cannot fully utilize an algorithm. We propose a data balancing method called B-GAN. It is based on generative adversarial networks used to solve the data imbalance problem. The method improves the ability of intrusion detection models to identify intrusions. ICS datasets are continuously built, so the generator and discriminator of B-GAN use the long short-term memory (LSTM) networks model. They can better capture the features of the data and generate high-quality anomaly samples. The performance bottleneck of traditional models is caused by data imbalance, but this has been improved. Our proposed method balances different open datasets, and a dataset balanced by B-GAN has been verified with standard intrusion detection methods. The experimental results demonstrate an improvement in the performance of intrusion detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奋斗语柳发布了新的文献求助10
1秒前
华仔应助啵啵洋采纳,获得30
1秒前
淡淡从安发布了新的文献求助10
2秒前
3秒前
4秒前
zhangxi完成签到,获得积分10
4秒前
星辰大海应助活泼的番茄采纳,获得10
5秒前
隐形曼青应助mingjie采纳,获得10
5秒前
高大小猫咪完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
6秒前
zhangxi发布了新的文献求助10
7秒前
zhenyu发布了新的文献求助10
8秒前
8秒前
ygg应助Ai采纳,获得10
8秒前
FashionBoy应助zyf采纳,获得10
10秒前
10秒前
陈佳欣发布了新的文献求助10
10秒前
Hermione发布了新的文献求助10
10秒前
奋斗语柳完成签到,获得积分20
10秒前
斯文败类应助小努力采纳,获得10
11秒前
11秒前
月亮完成签到,获得积分10
11秒前
深情安青应助doctorbba采纳,获得30
12秒前
科研通AI2S应助YuF采纳,获得10
12秒前
13秒前
14秒前
糯米团完成签到,获得积分10
14秒前
牛奶加咖啡完成签到,获得积分10
14秒前
小景007完成签到,获得积分10
14秒前
Orange应助小赞采纳,获得30
15秒前
超帅的怡发布了新的文献求助10
15秒前
1234完成签到,获得积分10
15秒前
布吉岛呀发布了新的文献求助10
16秒前
16秒前
lala发布了新的文献求助10
17秒前
申贺臣发布了新的文献求助10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150