已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel Transformer-based deep neural network for the prediction of post-refracturing production from oil wells

人工神经网络 变压器 深度学习 计算机科学 短时记忆 人工智能 循环神经网络 油井 编码器 石油生产 工程类 石油工程 电气工程 电压 操作系统
作者
Jing Jia,Diquan Li,Lichang Wang,Qinghu Fan
出处
期刊:Advances in geo-energy research [Yandy Scientific Press]
卷期号:13 (2): 119-131 被引量:4
标识
DOI:10.46690/ager.2024.08.06
摘要

The accurate prediction of post-refracture production can be of great value in the selection of target wells for refracturing. Given that production from post-refracture wells yields time-series data, deep neural networks have been utilized for making these predictions. Conventional deep neural networks, including recurrent neural network and long shortterm memory neural network, often fail to effectively capture long-range dependencies, which is particularly evident in tasks such as forecasting oil well production over periods extending up to 36 years. To overcome this limitation, this paper presents a novel deep neural network based on Transformer architecture, meticulously designed by fine-tuning the key components of the architecture, including its dimensions, the number of encoder layers, attention heads, and iteration cycles. This Transformer-based model is deployed on a dataset from oil wells in the Junggar Basin that spans the period of 1983 to 2020. The results demonstrate that the Transformer significantly outperforms traditional models such as recurrent neural networks and long short-term memory, underscoring its enhanced ability to manage long-term dependencies within time-series data. Moreover, the predictive accuracy of Transformer was further validated with data from six newly refractured wells in the Junggar Basin, which underscored its effectiveness over both 90 and 180 days post-refracture. The effective application of the proposed Transformer-based time-series model affirms the feasibility of capturing long-term dependencies using Transformer-based encoders, which also allows for more accurate predictions compared to conventional deep learning techniques. Document Type: Original article Cited as: Jia, J., Li, D., Wang, L., Fan, Q. Novel Transformer-based deep neural network for the prediction of post-refracturing production from oil wells. Advances in Geo-Energy Research, 2024, 13(2): 119-131. https://doi.org/10.46690/ager.2024.08.06
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研通管家采纳,获得10
刚刚
打打应助leeyh采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
岩崖应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
N型半导体发布了新的文献求助10
刚刚
CodeCraft应助rajvsvj采纳,获得10
1秒前
1秒前
2秒前
核动力驴发布了新的文献求助10
2秒前
打打应助N型半导体采纳,获得10
8秒前
8秒前
实打实大苏打完成签到,获得积分20
12秒前
13秒前
leeyh完成签到,获得积分10
14秒前
缓慢的悒发布了新的文献求助30
14秒前
万能图书馆应助wang_dong采纳,获得10
17秒前
40873完成签到 ,获得积分10
19秒前
23秒前
6666完成签到,获得积分10
25秒前
镓氧锌钇铀应助ziutinkei采纳,获得20
28秒前
不开心发布了新的文献求助10
28秒前
28秒前
充电宝应助实打实大苏打采纳,获得10
34秒前
美好斓发布了新的文献求助10
34秒前
reck发布了新的文献求助10
35秒前
湘湘完成签到 ,获得积分10
35秒前
香蕉觅云应助疯狂的鸣凤采纳,获得10
36秒前
36秒前
38秒前
完美世界应助不开心采纳,获得10
40秒前
40秒前
Jaime发布了新的文献求助10
41秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4255049
求助须知:如何正确求助?哪些是违规求助? 3787795
关于积分的说明 11887709
捐赠科研通 3437966
什么是DOI,文献DOI怎么找? 1886753
邀请新用户注册赠送积分活动 937845
科研通“疑难数据库(出版商)”最低求助积分说明 843574