M2GCNet: Multi-modal Graph Convolution Network for Precise Brain Tumor Segmentation Across Multiple MRI Sequences

计算机科学 图形 分割 人工智能 像素 图像分割 模式识别(心理学) 卷积(计算机科学) 情态动词 理论计算机科学 人工神经网络 化学 高分子化学
作者
Tongxue Zhou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4896-4910 被引量:10
标识
DOI:10.1109/tip.2024.3451936
摘要

Accurate segmentation of brain tumors across multiple MRI sequences is essential for diagnosis, treatment planning, and clinical decision-making. In this paper, I propose a cutting-edge framework, named multi-modal graph convolution network (M2GCNet), to explore the relationships across different MR modalities, and address the challenge of brain tumor segmentation. The core of M2GCNet is the multi-modal graph convolution module (M2GCM), a pivotal component that represents MR modalities as graphs, with nodes corresponding to image pixels and edges capturing latent relationships between pixels. This graph-based representation enables the effective utilization of both local and global contextual information. Notably, M2GCM comprises two important modules: the spatial-wise graph convolution module (SGCM), adept at capturing extensive spatial dependencies among distinct regions within an image, and the channel-wise graph convolution module (CGCM), dedicated to modelling intricate contextual dependencies among different channels within the image. Additionally, acknowledging the intrinsic correlation present among different MR modalities, a multi-modal correlation loss function is introduced. This novel loss function aims to capture specific nonlinear relationships between correlated modality pairs, enhancing the model's ability to achieve accurate segmentation results. The experimental evaluation on two brain tumor datasets demonstrates the superiority of the proposed M2GCNet over other state-of-the-art segmentation methods. Furthermore, the proposed method paves the way for improved tumor diagnosis, multi-modal information fusion, and a deeper understanding of brain tumor pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张小小发布了新的文献求助10
1秒前
科研通AI6应助Promise采纳,获得30
2秒前
4秒前
疑夕完成签到,获得积分10
5秒前
纹银完成签到,获得积分10
6秒前
福崽发布了新的文献求助10
7秒前
一行白鹭上青天完成签到 ,获得积分10
8秒前
知行完成签到,获得积分10
8秒前
漏脑之鱼完成签到 ,获得积分10
9秒前
zxy发布了新的文献求助10
9秒前
DengJJJ完成签到,获得积分10
11秒前
慕青应助wwww威采纳,获得10
11秒前
欣喜的向日葵完成签到,获得积分10
13秒前
易水寒完成签到 ,获得积分10
16秒前
17秒前
Lucas应助muyassar采纳,获得10
17秒前
苹果冰蓝完成签到,获得积分10
21秒前
GGGrigor完成签到,获得积分10
22秒前
聪明伊完成签到,获得积分10
22秒前
森森发布了新的文献求助10
22秒前
自信雅琴完成签到,获得积分20
24秒前
25秒前
tom完成签到,获得积分10
27秒前
NexusExplorer应助浏阳河采纳,获得10
27秒前
28秒前
29秒前
29秒前
30秒前
muyassar发布了新的文献求助10
31秒前
生物科研小白完成签到 ,获得积分10
31秒前
爆米花应助8y24dp采纳,获得10
31秒前
wwww威发布了新的文献求助10
33秒前
33秒前
34秒前
fulu发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
35秒前
橙子应助白野凛采纳,获得50
35秒前
Murphy发布了新的文献求助10
35秒前
vv发布了新的文献求助10
36秒前
38秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130587
求助须知:如何正确求助?哪些是违规求助? 4332661
关于积分的说明 13498206
捐赠科研通 4169176
什么是DOI,文献DOI怎么找? 2285532
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227443