Teaching Masked Autoencoder With Strong Augmentations

自编码 计算机科学 人工智能 自然语言处理 深度学习
作者
Rui Zhu,Yalong Bai,Ting Yao,Jingen Liu,Zhenglong Sun,Tao Mei,Chang Wen Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3419898
摘要

Masked autoencoder (MAE) has been regarded as a capable self-supervised learner for various downstream tasks. Nevertheless, the model still lacks high-level discriminability, which results in poor linear probing performance. In view of the fact that strong augmentation plays an essential role in contrastive learning, can we capitalize on strong augmentation in MAE? The difficulty originates from the pixel uncertainty caused by strong augmentation that may affect the reconstruction, and thus, directly introducing strong augmentation into MAE often hurts the performance. In this article, we delve into the potential of strong augmented views to enhance MAE while maintaining MAE's advantages. To this end, we propose a simple yet effective masked Siamese autoencoder (MSA) model, which consists of a student branch and a teacher branch. The student branch derives MAE's advanced architecture, and the teacher branch treats the unmasked strong view as an exemplary teacher to impose high-level discrimination onto the student branch. We demonstrate that our MSA can improve the model's spatial perception capability and, therefore, globally favors interimage discrimination. Empirical evidence shows that the model pretrained by MSA provides superior performances across different downstream tasks. Notably, linear probing performance on frozen features extracted from MSA leads to 6.1% gains over MAE on ImageNet-1k. Fine-tuning (FT) the network on VQAv2 task finally achieves 67.4% accuracy, outperforming 1.6% of the supervised method DeiT and 1.2% of MAE. Codes and models are available at https://github.com/KimSoybean/MSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪壮的青雪完成签到 ,获得积分10
2秒前
于冷松完成签到,获得积分10
3秒前
雪白胡萝卜完成签到,获得积分10
3秒前
happyboy2008完成签到 ,获得积分10
4秒前
超级的妙晴完成签到 ,获得积分10
4秒前
梦想飞翔发布了新的文献求助10
7秒前
Edward完成签到,获得积分10
8秒前
yidashi完成签到,获得积分10
8秒前
Agan完成签到,获得积分10
9秒前
Triumph完成签到,获得积分10
10秒前
阿卫完成签到,获得积分10
10秒前
10秒前
snowpie完成签到 ,获得积分10
10秒前
wangwei发布了新的文献求助20
11秒前
科研通AI2S应助许成泽采纳,获得10
11秒前
CipherSage应助hahaha采纳,获得10
11秒前
赘婿应助导师老八采纳,获得10
11秒前
思绪摸摸头完成签到 ,获得积分10
14秒前
Owen应助TT采纳,获得10
14秒前
111完成签到,获得积分20
16秒前
18秒前
nihaoya172完成签到,获得积分10
21秒前
chaojia_niu完成签到,获得积分10
21秒前
竹桃完成签到 ,获得积分10
21秒前
是莉莉娅完成签到,获得积分10
22秒前
meteorabob完成签到,获得积分10
22秒前
22秒前
yaya完成签到 ,获得积分10
22秒前
王波完成签到 ,获得积分10
22秒前
乐观的冰珍完成签到,获得积分20
24秒前
导师老八发布了新的文献求助10
24秒前
ihonest完成签到,获得积分10
24秒前
我住隔壁我姓王完成签到,获得积分10
25秒前
26秒前
hahaha发布了新的文献求助10
27秒前
简时完成签到 ,获得积分10
27秒前
明理的问兰完成签到,获得积分10
28秒前
xinxiangshicheng完成签到 ,获得积分10
28秒前
fff完成签到,获得积分10
31秒前
32秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346708
关于积分的说明 10329984
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726