亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Teaching Masked Autoencoder With Strong Augmentations

自编码 计算机科学 人工智能 自然语言处理 深度学习
作者
Rui Zhu,Yalong Bai,Ting Yao,Jingen Liu,Zhenglong Sun,Tao Mei,Chang Wen Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3419898
摘要

Masked autoencoder (MAE) has been regarded as a capable self-supervised learner for various downstream tasks. Nevertheless, the model still lacks high-level discriminability, which results in poor linear probing performance. In view of the fact that strong augmentation plays an essential role in contrastive learning, can we capitalize on strong augmentation in MAE? The difficulty originates from the pixel uncertainty caused by strong augmentation that may affect the reconstruction, and thus, directly introducing strong augmentation into MAE often hurts the performance. In this article, we delve into the potential of strong augmented views to enhance MAE while maintaining MAE's advantages. To this end, we propose a simple yet effective masked Siamese autoencoder (MSA) model, which consists of a student branch and a teacher branch. The student branch derives MAE's advanced architecture, and the teacher branch treats the unmasked strong view as an exemplary teacher to impose high-level discrimination onto the student branch. We demonstrate that our MSA can improve the model's spatial perception capability and, therefore, globally favors interimage discrimination. Empirical evidence shows that the model pretrained by MSA provides superior performances across different downstream tasks. Notably, linear probing performance on frozen features extracted from MSA leads to 6.1% gains over MAE on ImageNet-1k. Fine-tuning (FT) the network on VQAv2 task finally achieves 67.4% accuracy, outperforming 1.6% of the supervised method DeiT and 1.2% of MAE. Codes and models are available at https://github.com/KimSoybean/MSA.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助翔哥采纳,获得10
刚刚
dd完成签到,获得积分10
2秒前
3秒前
dd发布了新的文献求助10
7秒前
20秒前
丘比特应助王木木采纳,获得10
25秒前
就爱吃抹茶完成签到 ,获得积分10
26秒前
斯文的楷瑞完成签到,获得积分10
29秒前
Ferry完成签到 ,获得积分10
29秒前
KimRz完成签到,获得积分10
37秒前
呜呜呜应助dd采纳,获得10
40秒前
echo完成签到 ,获得积分10
47秒前
Ykaor完成签到 ,获得积分10
47秒前
ttrhoton完成签到,获得积分10
55秒前
超级Huan完成签到,获得积分10
55秒前
追寻依波完成签到,获得积分10
55秒前
无花果应助PAD采纳,获得10
57秒前
honeylaker完成签到,获得积分10
1分钟前
白鲸完成签到,获得积分10
1分钟前
小蘑菇应助xwz626采纳,获得10
1分钟前
白鲸发布了新的文献求助30
1分钟前
叙白完成签到 ,获得积分10
1分钟前
船长完成签到,获得积分10
1分钟前
虚拟的凌旋完成签到 ,获得积分10
1分钟前
大胖小子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
风趣惜灵发布了新的文献求助10
1分钟前
hsl发布了新的文献求助10
1分钟前
1分钟前
山川日月完成签到,获得积分10
1分钟前
1分钟前
1分钟前
忐忑的方盒完成签到 ,获得积分10
1分钟前
谢怡宁发布了新的文献求助10
1分钟前
1分钟前
脑洞疼应助风趣惜灵采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
PAD发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875523
求助须知:如何正确求助?哪些是违规求助? 6517582
关于积分的说明 15677159
捐赠科研通 4993443
什么是DOI,文献DOI怎么找? 2691512
邀请新用户注册赠送积分活动 1633774
关于科研通互助平台的介绍 1591407