Prognostic and Health Management of CT Equipment via a Distance Self-Attention Network Using Internet of Things

计算机科学 互联网 计算机网络 万维网
作者
Haopeng Zhou,Zhenlin Li,Tong Wu,Changxi Wang,Kang Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (19): 31338-31354
标识
DOI:10.1109/jiot.2024.3421365
摘要

Anomalies or failures in medical equipment may lead to severe consequences. Data-driven prognostic and health management (PHM) approaches can improve maintenance efficiency and reduce maintenance costs at hospitals while protecting patients' lives. However, currently, the research and application of PHM in medical equipment is still rather limited. The development of the Internet of Things (IoT) technology provides new opportunities for PHM, which can safely collect, analyze, and store real-time equipment data in hospitals. The data-driven models used in PHM predict anomalies or failures. However, current data-driven models' performance may be limited due to lack of consideration for the interaction of similar features and the importance of different time steps. Hence, this article proposes a new deep-learning network called similar feature interaction (SFI) with distance self-attention (SA) for the PHM of medical equipment. First, an SFI module which uses clustering algorithms and causal convolution layers is proposed to consider the interaction of similar features. Second, a distance SA mechanism is proposed to allocate more attention to important time steps. The experiments on millions of computed tomography (CT) equipment operating status instants collected by IoT in the hospital and the public data set show that the proposed model is superior to existing models. The results show that the accuracy, recall, precision, and f1-score of the proposed model on the real CT log data achieve 0.865, 0.682, 0.469, and 0.556, respectively. The proposed PHM model can assist the equipment maintenance team of hospitals in decision making under the IoT framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净冰露发布了新的文献求助10
1秒前
A溶大美噶发布了新的文献求助10
1秒前
2秒前
zhaoyizhaoyi发布了新的文献求助10
4秒前
Conley完成签到,获得积分10
4秒前
彭于晏应助apk866采纳,获得10
4秒前
李BO发布了新的文献求助10
4秒前
归尘发布了新的文献求助10
7秒前
10秒前
上官若男应助英勇白莲采纳,获得10
12秒前
111完成签到 ,获得积分10
14秒前
叶子完成签到,获得积分10
19秒前
毛益聪完成签到,获得积分10
20秒前
zz发布了新的文献求助10
22秒前
烟花应助gg采纳,获得10
23秒前
24秒前
馨lover发布了新的文献求助10
24秒前
彭于晏应助Zhang采纳,获得10
28秒前
陶醉的红酒完成签到,获得积分10
29秒前
wjn完成签到,获得积分10
34秒前
七七完成签到,获得积分10
35秒前
哈哈哈eric应助流星采纳,获得10
35秒前
快乐丸子完成签到,获得积分10
36秒前
脑洞疼应助馨lover采纳,获得10
36秒前
38秒前
jojo完成签到,获得积分10
39秒前
fanny完成签到 ,获得积分10
39秒前
42秒前
馨lover完成签到,获得积分10
42秒前
wyx完成签到 ,获得积分10
43秒前
彭于晏应助A溶大美噶采纳,获得10
43秒前
43秒前
jojo发布了新的文献求助10
45秒前
SAVP发布了新的文献求助10
45秒前
Ampace小老弟完成签到 ,获得积分10
46秒前
48秒前
李健的粉丝团团长应助lll采纳,获得10
48秒前
49秒前
50秒前
52秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906101
求助须知:如何正确求助?哪些是违规求助? 3451681
关于积分的说明 10865958
捐赠科研通 3176999
什么是DOI,文献DOI怎么找? 1755205
邀请新用户注册赠送积分活动 848710
科研通“疑难数据库(出版商)”最低求助积分说明 791207